

My Way Into and Through the Didactics of Engineering Mathematics

Burkhard Alpers, Aalen University, Germany Oeresundsdagen 3, 2022 Burkhard.Alpers@hs-aalen.de

Structure

- Starting position
- Main stages and themes of getting into mathematics didactics
- Consequences for daily practical education
- Main intention of the talk: Showing potential ways to get didactically involved, no autobiography!

Starting position

- 1995: Professor for Mathematics and Computer Science at Aalen University of Applied Sciences ("Fachhochschule")
- Located within the Department of Mechanical Engineering
- Predominantly teaching position (18h/week load)
- Stable environment
 - Colleagues teaching application subjects
 - Curriculum for Mechanical Engineering Study Course
 - Perspective: About 30 years of teaching
- Personal prerequisites
 - First State Examination as High School Teacher (Mathematics/History)
 - PhD in Pure Mathematics (Algebra/Geometry: Quadratic Forms)
 - Five years in Industry: Siemens Corporate R&D, Computer Networks
 - No idea of mechanical engineering
- Student prerequisites: Very heterogeneous, different routes, ~50/class

First steps

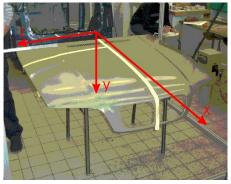
- Main intention from start: Make mathematics understandable and useful for mechanical engineering students and let students "do" mathematics:
 - Offer opportunities for understanding for the heterogeneous student population ("good" explanations)
 - Let students actively work with and train mathematical concepts via assignments
 - Choose relevant topics well-integrated into the study course
- Initial didactical settings:
 - Lecture with engaging students by questioning (in Germany known as "fragendentwickelnder Unterricht")
 - Provide assignments for student engagement which are relevant for assessment
- Ask engineering colleagues:
 - Questionnaire with current list of contents (mathematical topics) (what needs to be dealt with?)
 - Reaction: Surprise
 - Result: Few insights.

Direction of first didactical projects (late 90s)

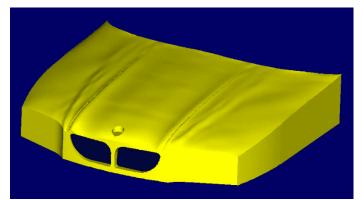
- Make connections between mathematics and application subjects directly visible via hypertext
 - Manuscripts of colleagues (Mechanics, Physics, ...) as hypertext
 - Whenever mathematics is used offer link to explanatory material
 - Referring to didactical literature on multimedia learning (e.g. on design principles)
- Result:
 - Complete failure regarding usage by students
 - Lesson learnt: Integrate offerings in obligatory activities
 - Considearble improvement of my own understanding of using mathematics in concurrently running and later application subjects
 - Use in lectures (and later in assignments) to make connections explicit (why is something important, where do I need it?)
- Use of mathematical technology: CAS
 - Early ICTMT conferences, CAME conferences, German CAS conferences with professional exchange: Reflective practitioners report on how to improve understanding by experimenting with and visualizing mathematical concepts
 - Use for checking assignments and exam tasks, production of visualizations for lectures

Extending the use of technology (1)

- Major goal: Use technology to let students experience the use and meaning of mathematics in engineering.
- Creation and usage of a "microworld" for use in the Student-Engineering-Academy (for about 10 years)
 - Offer in Maple® a set of data structures and functions to mathematically model Carrera® toy racing courses and to construct and animate good motion functions; compare computed with real round times
 - Intensive study of didactical literature on microworlds and aspects of functional thinking: concept image and definition, mis-understandings, different representations, ... (subject-matter didactics ; "Stoff-Didaktik")
 - Use this to address specific facets of the function concept and to interpret observations
 - Somewhere between practitioner reflection and didactical research


Extending the use of technology (2)

- Introducing technology-based mathematical application projects in semester 3 (from 2000 on)
 - Goal: Let students experience the use of mathematics when working on an application problem
 - Design: Group projects (3-4 students) with documentation and presentation (all different), binary assessment.
 - Identification of design criteria for good projects: mathematical part of reasonable size; application-related problem; openness; use of mathematical software; modularity for distribution of work
 - Facilitating the finding of ever new good projects: Identification of project classes
 - Examples: Reproduction of a part; take measurements of motion and test which model of friction fits best; model a hinge mechanism for a cupboard.
 - Design based on didactical literature but no research on outcome (qualitative methods observing students and investigating documents)
 - Experience: Well accepted if well supported; interesting discussions with groups where students got insight into my thinking; well remembered by students
 - Publication is my most downloaded article on ResearchGate


Example 1: Surface reproduction

 Example: Take measurements from the BMW motor lid available in the mechanical engineering labs, redesign the surface in a mathematics program and in CAD and reproduce a model of the part using a milling machine also available in the labs.

Example 2: Analysis of mechanisms

• The pictures below show a hinge joint for a cupboard which realizes a mechanism to open and close the lid. Analyse the mechanism (which parts move how) and set up a worksheet where you compute the position of the different parts when the user opens the lid. Set up a principle construction in a CAD programme and check your results.

Extending usage studies to the workplace (2005-2010)

- Question: Which mathematical "qualifications" are still required at engineering workplaces?
- Only very few studies are available regarding engineering workplaces
 - Observing students working on final project
 - "Ethnographic research" at real workplaces
- Design of own study
 - Identify typical tasks for junior engineers with colleague from mechanical engineering, e.g. construction of an appliance in a car which should carry a device; taking and processing measurements in a test bed for steering mechanisms.
 - Let students work on these tasks using state-of-the-art technological tools (CAD, FEM) where colleague acts as mentor
 - Let students document their work, interview students
 - Try to find interesting categories from research and by own thinking, applying "basic" qualitative research methods
- Framework for "qualifications" was still missing, later: "mathematical competencies"

Involvement in professional exchange (1)

- From 2005 member of SEFI Mathematics Working Group
 - Bi-annual seminars
 - 2008-2014 Chairman
 - Mainly practitioners but didactical researchers invited at seminars in order to establish connections
- Normative work on "Curriculum Framework"
 - Identification of potential goals by exchange and agreement of small group of "experts" with different backgrounds
 - In edition 1 and 2 very content-related, "higher-level understanding" hardly covered
 - Search for framework in didactical literature
 - Result in edition 3: Concept of "mathematical competence" (Mogens Niss): "... ability to understand, judge, do, and use mathematics in a variety of intraand extra-mathematical contexts and situations in which mathematics plays or could play a role"
- How can this be used to set up a concrete curriculum?
 - Mathematics curriculum for a practice-oriented study course in ME

Involvement in professional exchange (2): Resulting documents (sefi.htw-aalen.de)

European Society for Engineering Education Europäische Gesellschaft für Ingenieur-Ausbilding Société Européenne pour la Formation des Ingénieurs

European Society for Engineering Education (SEFI)

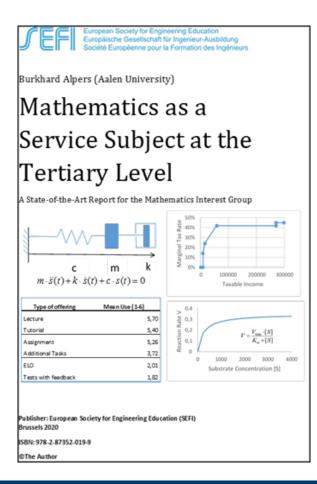
A Framework for Mathematics Curricula in Engineering Education

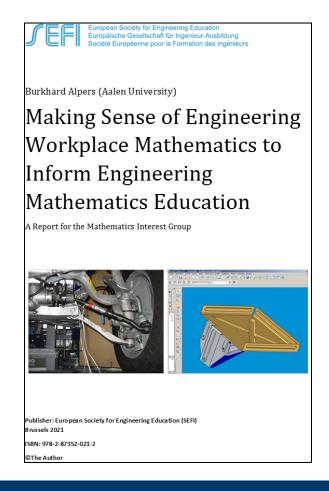
A Report of the Mathematics Working Group

tooth numbers?

Publisher: European Society for Engineering Education (SEFI), Brussels ISBN: 978-2-87352-007-6

Principal Editor: Burkhard Alpers Associate Editors: Marie Demlova, Carl-Henrik Fant, Tommy Gustafsson, Duncan Lawson, Leslie Mustoe, Brita Olsson-Lehtonen, Carol Robinson, Daniela Velichova ©SEFI 2013 European Society for Engineering Education (SEFI)


A Mathematics Curriculum for a Practice-oriented Study Course in Mechanical Engineering Burkhard Alpers


03.02.2014 Version 1.3

Involvement in professional exchange (3)

• Establishing connections between practitioners and didactical research by informing the community on the state-of-the-art.

Application to own teaching and research (2010-?)

- Changes in teaching:
 - Modify assignments to include use of mathematics in applications (e.g. machine elements and mechanisms).
 - Include obligatory "small projects" in mathmatics I, II related to Engineering Mechanics I, II
- Further studies on concrete mathematical competencies needed in application subjects
 - Modelling competencies in statics tasks
 - Reasoning competencies in statics textbook
 - Mainly task and textbook analysis using competency elaboration from literature as interpretation framework
- Identification of differences between usage of mathematics in mathematical science and engineering subjects
 - Continuity of functions, concept of vectors, differentials in engineering mechanics

Summary: Different ways to relate to didactical research

- Using results from didactical literature when designing learning material and environments:
 - Multimedia didactics for hypertext
 - Microworld research and subject-matter didactics on functions for microworld
 - Project design for mathematical application projects
- Using didactical literature to clarify objectives:
 - Concept of mathematical competence/competencies
- Using didactical research to interpret artefacts, observations and experience
 - Use subject-matter didactics for understanding students' diffculties
 - Interpret textbooks and observations from workplaces in terms of competencies
- Performing own didactical research using qualitative research methods
 - Identification of facets of mathematical competencies in application subjects and workplaces

Conclusions and Recommendations

- The prerequisites (stable environment and dedicated teaching position) were very important for motivation and didactical engagement.
- The transfer of theoretical insights to practical educational settings (lectures, assignments, projects) is important for having a feedback cycle. If you consider something as important, offer respective learning opportunities.
- Concentrate on main ideas and the interface an engineer has to mathematics (less is more).
- Find a suitable mixture of instruction and construction.
- Find a suitable mixture of basic training and deeper conceptual thinking.
- Am I a "great pretender"?
 - Some competence-related goals sound very ambitious
 - Consider such goals as "regulative ideas", not something to tick off