

A Programme Driven Approach to Mathematics in Engineering Education

Frode Rønning Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

Engineering education at NTNU

- 12 three-year BAprogrammes (>1000 new students each year)
- 17 five-year MAprogrammes (≈1700 new students each year)

The five-year MA-programmes (sivilingeniørprogrammene)

- 17 different study programmes from 20 to > 200 students in each programme
- 5 courses (7.5 ECTS) mathematics and statistics
- With small variations, identical for all programmes, up to now …
- Technology Studies for the Future
- Important principles
 - A programme driven approach
 - Contextual learning
- Inspired by the CDIO principles (Crawley et al., 2014)

The five-year MA-programmes (sivilingeniørprogrammene

- 17 different study programmes fro students in each programme
- 5 courses (7.5 ECTS) mathematics
- With small variations, identical for al now …
- Technology Studies for the Future
- Important principles
 - A programme driven approach
 - Contextual learning
- Inspired by the CDIO principles (Crawley et al., 2014)

Mathematics as a Thinking Tool

- Goals of the project
 - Use mathematics in realistic engineering situations
 - Enhance computational aspects of mathematics
 - Strengthen students' experiences of the relevance of mathematics
- The project includes these programmes:
 - Electronics Systems Design and Innovation (from 2020)
 - Chemical Engineering and Biotechnology (from 2022)
 - Cybernetics and Robotics (from 2022)
- The project is based on
 - Mathematics taught by mathematicians, engineering taught by engineers
 - Shared responsibility:
 - mathematicians responsible for providing mathematics relevant for engineering.
 - engineers responsible for showing the students how mathematics can be actively applied in their engineering field.

Thematically Integrated Motivational Example (TIME)

- A TIME is a case selected from an engineering context bringing together several topics and illustrating in a motivating way how the chosen topics work together to bring about a phenomenon or effectuate a purpose.
- The case should be chosen in such a way that essential mathematical concepts are necessary for its explanation, analysis and/or design.
- The TIME should be dealt with in both a mathematics course and in one or more engineering courses.
- Example: A non-linear oscillator

A non-linear oscillator

The engineering world

An auto-oscillating system

A non-linear differential equation

$\frac{d^2y}{dt^2} + \frac{R_3}{L}f(y)\frac{dy}{dt} + \frac{1}{LC}y = 0$

where
$$f(y) = 1 - \frac{dg(y)}{dy}$$
, and
 $g^{-1}(y) = 2R_1I_0 \sinh\left(\frac{y}{V_0}\right) + \frac{1}{R_2}y$

A non-linear oscillator

The engineering world Measuring Comparing The mathematical world $\frac{d^2y}{dt^2} + \frac{R_3}{L}f(y)\frac{dy}{dt} + \frac{1}{L}y = 0$ $R_1 = 10k\Omega, R_2 = 10.27k\Omega$ $R_1 = 10k\Omega, R_2 = 10.27k\Omega$ 0.3 Realisert 4000 Simulert 3000 0.2 where $f(y) = 1 - \frac{dg(y)}{dy}$, and 2000 0.1 1000 $g^{-1}(y) = 2R_1 I_0 \sinh(\frac{y}{V_0}) + \frac{1}{R_2} y$ dy, i(t) 0.0 ^x, i(t) -1000 -0.1 -2000 Computing -0.2 -3000 Realisert -4000 Simulert -0.3

-200 0 200

400

t(ms)

600

800

1000

0.3

-0.3

-0.2

-0.1

0.0

y, i(t)

0.1

0.2

Survey results – 1st year students

Experienced relevance of mathematics	Completely agree	Partly agree	Partly disagree	Completely disagree
I have seen why mathematics will be important for me later in my studies.	34/ 82	38/ 18	21/ 0	7/ 0
In my work with other courses (i.e., not mathematics courses) I have seen the importance of learning mathematics.	37/ 85	44/ 13	14/ 0	5/ 0
I don't think the mathematics I have learned is very relevant for my study programme.	5/ 2	25/ 2	44/ 18	26/ 78
So far, in my work with other courses (i.e., not mathematics courses), I have managed with the mathematics I learned at school.	28/7	32/11	24/ 49	16/33

Results from survey including the Electronics Systems programme (boldface), n = 45, and "the rest", n = 494.

New survey will give possibilities to compare Chemistry and Cybernetics before and after entering the project.

Some challenges

- We are now in the third year with mathematics for *Electronics Systems Design* and in the first year with *Chemical Engineering and Biotechnology* and *Cybernetics and Robotics*
- How to scale up to include the 14 other Master of Technology programmes at NTNU?
- Possible model: Create clusters of programmes getting the same mathematics courses
 - How many clusters?
 - How to compose the clusters?
- We are currently running a survey among the MT programmes to map out the needs for mathematics

Trends from this survey

- We see varying degree of engagement
 - Some programmes have clear opinions on what they need, and when they need it
- Linear algebra is needed early (1st semester)
- Computational (numerical) methods should be more strongly emphasised
- Multivariate calculus and vector calculus could be postponed (2nd year) for some programmes

Necessary conditions for contextual learning to succeed

- Mathematicians need to engage with engineering problems
- Engineering teachers need to engage with mathematics
- Teachers from both fields need to talk together
- Cannot be too dependent on a few enthusiasts