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Abstract. Parabolic equations on evolving domains model a multitude of applications including
various industrial processes such as the molding of heated materials. Such equations are numerically
challenging as they require large-scale computations and the usage of parallel hardware. Domain
decomposition is a common choice of numerical method for stationary domains, as it gives rise to
parallel discretizations. In this study, we introduce a variational framework that extends the use of such
methods to evolving domains. In particular, we prove that transmission problems on evolving domains
are well posed and equivalent to the corresponding parabolic problems. This in turn implies that the
standard non-overlapping domain decompositions, including the Robin–Robin method, become well
defined approximations. Furthermore, we prove the convergence of the Robin–Robin method. The
framework is based on a generalization of fractional Sobolev–Bochner spaces on evolving domains,
time-dependent Steklov–Poincaré operators, and elements of the approximation theory for monotone
maps.

1. Introduction

Industrial applications involving molding typically result in parabolic PDEs with the non-
standard feature of evolving or moving spatial domains. In order to illustrate this, consider the
production of railway tracks. This process includes two crucial steps, as depicted in Figure 1.
First, the rail is shaped, which involves hot rolling a steel beam with a rectangular cross
section into a rail with an H-shaped cross section. Second, the newly molded rail is solidified
by spraying water on its surface. A basic model for the temperature 𝑢 of the rail is then given
by a non-autonomous parabolic equation on an evolving domain. That is, for the evolving
domain {Ω(𝑡)}𝑡∈[0,∞) , the temperature 𝑢 satisfies

¤𝑢(𝑡) − ∇ ·
(
𝛼(𝑡)∇𝑢(𝑡)

)
+
(
∇ · w(𝑡) + 𝛽(𝑡)

)
𝑢(𝑡) = 𝑓 (𝑡) in Ω(𝑡),
𝑢(𝑡) = 𝜂(𝑡) on 𝜕Ω(𝑡),
𝑢(0) = 0 in Ω(0).

(1)
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Cooling

Figure 1. Left image: sketch of a steel beam Ω at time 𝑡 being reshaped via hot rolling and thereafter
solidified by water cooling. Right image: Decomposition of the steel beam at time 𝑡, where Ω(𝑡) is
decomposed into Ω1 (𝑡) and Ω2 (𝑡) = Ω2,1 (𝑡) ∪Ω2,2 (𝑡).

Here, the time evolution is described by the material derivative

¤𝑢(𝑡) = 𝜕𝑡𝑢(𝑡) + w(𝑡) · ∇𝑢(𝑡),

and the domain Ω(𝑡) and its boundary 𝜕Ω(𝑡) evolve according to the known velocity field w.
The precise geometry and assumptions on the problem data will be specified in Sections 2
and 5. For simplicity we will only consider 𝜂 ≡ 0 in (1), but non-zero time-dependent
boundary conditions can be handled as done in Section 6.

Other applications of parabolic equations on evolving domains and hypersurfaces, to
name a few, include: the dynamics of bubbles rising in liquid columns [19] governed by
the Navier–Stokes equations; tumor growth models [5] consisting of reaction-diffusion
equations on surfaces evolving via forced mean curvature flows; spinodal decomposition of
binary polymer mixtures [23] governed by the Cahn–Hilliard equation.

Parabolic equations on evolving domains are numerically challenging due to the time-
dependent geometry and the need for implicit time integration. This all results in large-scale
computations that require the usage of parallel and distributed hardware. In the context of
stationary domains, the domain decomposition method is a common choice that gives rise
to parallel discretizations. The basic idea for these methods is to decompose the domain
associated to the equation into subdomains and thereafter communicate the results via the
boundaries to the adjacent subdomains. As an example, when shaping the train rail one
could, at a fixed time, decompose the rail into three subdomains, where the middle one
is a small region around the deformation zone, see Figure 1. The computational benefit
of this is that each subdomain can be given a tailored spatial mesh. For example, the
deformation subdomain typically requires a finer mesh than the other subdomains. For a
general introduction to domain decomposition methods we refer to [31, 34].

From a mathematical perspective non-overlapping domain decomposition methods
can be designed by first proving that the original parabolic equation (1) is equivalent to a
so-called transmission problem. For two disjoint evolving subdomains Ω𝑖 (𝑡), 𝑖 = 1, 2, such
that Ω(𝑡) = Ω1 (𝑡) ∪Ω2 (𝑡) and Γ(𝑡) = 𝜕Ω1 (𝑡) ∩ 𝜕Ω2 (𝑡), the strong form of the transmission
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problem becomes

¤𝑢𝑖 (𝑡) − ∇ ·
(
𝛼(𝑡)∇𝑢𝑖 (𝑡)

)
+
(
∇ · w(𝑡) + 𝛽(𝑡)

)
𝑢𝑖 (𝑡) = 𝑓𝑖 (𝑡) in Ω𝑖 (𝑡),
𝑢𝑖 (𝑡) = 0 on 𝜕Ω𝑖 (𝑡) \ Γ(𝑡)

for 𝑖 = 1, 2,

𝑢1 (𝑡) = 𝑢2 (𝑡) on Γ(𝑡),
𝛼(𝑡)∇𝑢1 (𝑡) · 𝜈1 (𝑡) + 𝛼(𝑡)∇𝑢2 (𝑡) · 𝜈2 (𝑡) = 0 on Γ(𝑡),

(2)

where 𝜈𝑖 (𝑡) is the unit outward normal vector of 𝜕Ω𝑖 (𝑡), 𝑓𝑖 (𝑡) = 𝑓 (𝑡) |Ω𝑖 (𝑡 ) , and 𝑢𝑖 (𝑡) =
𝑢(𝑡) |Ω𝑖 (𝑡 ) .

The non-overlapping domain decompositions can then be derived by approximating
the transmission problem. For example, consider the classic Robin–Robin method, first
introduced in [27]. By taking linear combinations of the last two equations in (2), one has
the equivalent Robin conditions

𝛼(𝑡)∇𝑢1 (𝑡) · 𝜈𝑖 (𝑡) + 𝑠0𝑢1 (𝑡) = 𝛼(𝑡)∇𝑢2 (𝑡) · 𝜈𝑖 (𝑡) + 𝑠0𝑢2 (𝑡) on Γ(𝑡) for 𝑖 = 1, 2,

and a method parameter 𝑠0 > 0. Alternating between the subdomains then gives the Robin–
Robin method as computing (𝑢𝑛1 , 𝑢

𝑛
2 ) for 𝑛 = 1, 2, . . . with

¤𝑢𝑛1 (𝑡) − ∇ ·
(
𝛼(𝑡)∇𝑢𝑛1 (𝑡)

)
+
(
∇ · w(𝑡) + 𝛽(𝑡)

)
𝑢𝑛1 (𝑡) = 𝑓1 (𝑡) in Ω1 (𝑡),
𝑢𝑛1 (𝑡) = 0 on 𝜕Ω1 (𝑡) \ Γ(𝑡),

𝛼(𝑡)∇𝑢𝑛1 (𝑡) · 𝜈1 (𝑡) + 𝑠0𝑢
𝑛
1 (𝑡) =

𝛼(𝑡)∇𝑢𝑛−1
2 (𝑡) · 𝜈1 (𝑡)+𝑠0𝑢

𝑛−1
2 (𝑡) on Γ(𝑡),

¤𝑢𝑛2 (𝑡) − ∇ ·
(
𝛼(𝑡)∇𝑢𝑛2 (𝑡)

)
+
(
∇ · w(𝑡) + 𝛽(𝑡)

)
𝑢𝑛2 (𝑡) = 𝑓2 (𝑡) in Ω2 (𝑡),
𝑢𝑛2 (𝑡) = 0 on 𝜕Ω2 (𝑡) \ Γ(𝑡),

𝛼(𝑡)∇𝑢𝑛2 (𝑡) · 𝜈2 (𝑡) + 𝑠0𝑢
𝑛
2 (𝑡) =

𝛼(𝑡)∇𝑢𝑛1 (𝑡) · 𝜈2 (𝑡)+𝑠0𝑢
𝑛
1 (𝑡) on Γ(𝑡).

(3)

Here, 𝑢0
2 is an initial guess and 𝑢𝑛

𝑖
(𝑡) approximates 𝑢𝑖 (𝑡) = 𝑢(𝑡) |Ω𝑖 (𝑡 ) . Note that the Robin–

Robin method is sequential, but the computation of each 𝑢𝑛
𝑖

can be implemented in parallel
when Ω𝑖 (𝑡) is a union of nonadjacent subdomains, as is the case in Figure 1.

The well posedness of parabolic equations on evolving domains can be derived via
the framework [3], which relies on a variational formulation where the standard Sobolev–
Bochner solution space

𝐻1 ((0, 𝑇);𝐻−1 (Ω)
)
∩ 𝐿2 ((0, 𝑇);𝐻1

0 (Ω)
)

(4)

is generalized to evolving domains Ω(𝑡). The framework has also been extended to a Banach
space setting [2]. This variational setting constitutes the starting point of the design and
analysis of a wide range of finite element methods for equations on evolving domains. The
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development of continuous-in-time evolving finite element methods have been surveyed
in [9]. The extension to full space-time discretizations via Runge–Kutta and multistep time
integrators have, e.g., been analyzed in [8, 21, 29]. This type of analysis of full space-time
methods has also been extended to parabolic equations given on solution-dependent evolving
surfaces [22].

Domain decomposition methods have been proposed in the context of parallel time
integrators, as surveyed in [15], and there are several studies concerning the convergence
and other theoretical aspects of space-time decomposition methods applied to parabolic
equations on stationary domains, see, e.g., [1,11,12,14,16–18]. However, there is no simple
extension of the standard elliptic theory [31] to parabolic problems on stationary domains,
and certainly not to evolving domains. The main difficulty is that the standard variational
setting for parabolic problems, with solutions in the space denoted in (4), prevents one from
deriving the equivalence between (1) and (2). This is caused by the fact that functions with
the regularity of (4) cannot be “glued” together into a new function with the same regularity,
see [7, Example 2.14].

The goals of this paper are therefore to
(1) prove the equivalence between (1) and (2), by introducing a suitable variational

formulation;
(2) demonstrate that the standard non-overlapping domain decomposition methods,

including the Robin–Robin method, are well defined on evolving domains;
(3) illustrate the applicability of the framework by proving that the Robin–Robin method

is convergent when applied to non-autonomous parabolic equations on evolving
domains.

The main tool used to achieve the first goal is a new variational formulation with solutions
in the evolving domain generalization of the space

𝐻1/2 ((0,∞); 𝐿2 (Ω)
)
∩ 𝐿2 ((0,∞);𝐻1

0 (Ω)
)
;

see Sections 3 to 6. This resolves the issue with “gluing” functions together without losing
regularity, see Section 7. The 𝐻1/2-approach is due to [26] for smooth stationary domains
and extended to stationary Lipschitz domains in [7]. We have also explored a 𝐻1/2-setting
for domain decomposition methods for parabolic problems on stationary domains in [11,12].
The study [6] has also used a 𝐻1/2-variational formulation in order to analyze boundary
integral operators for the heat equation on evolving domains. In that work, the standard time
derivative is considered instead of the material derivative, which leads to a quite different
setting than ours.

The second and third goals are reached by reformulating the transmission problems and
the non-overlapping domain decomposition methods in terms of time-dependent Steklov–
Poincaré operators. As these operators become coercive in the new 𝐻1/2-setting, one can
prove that several domain decomposition methods are well defined via the Lax–Milgram
theorem and show convergence for the Robin–Robin method via the abstract convergence
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result [28], see Section 8. Note that this new approach even yields convergence in a stronger
norm compared to the previous results on stationary domains [11, 12].

The continuous analysis, derived in this paper, is also expected to hold in the finite-
dimensional case that arises after discretizing in space and time, e.g., by using space-time
finite elements, see, e.g., [32]. However, in order to limit the scope of the paper we will
restrict ourselves to the continuous case. The features and implementations of full domain
decomposition finite element discretizations will be studied elsewhere.

Throughout the paper, we will use the notation R+ = (0,∞), R0
+ = [0,∞) and 𝑐, 𝐶 will

denote generic positive constants.

2. Evolving domains

Let us describe the geometric setting. Assume that we have a bounded Lipschitz domain
Ω(0) ⊂ R𝑛, with 𝑛 = 2, 3, such that

Ω(0) = Ω1 (0) ∪Ω2 (0),

whereΩ𝑖 (0), 𝑖 = 1,2, are bounded Lipschitz domains that are disjoint with common boundary

Γ(0) = 𝜕Ω1 (0) ∩ 𝜕Ω2 (0).

We assume that Γ(0) is a (𝑛 − 1)-dimensional Lipschitz manifold. Note that all results will
also be valid for the case 𝑛 = 1, but with a slightly altered notation. It is also possible to
replace Ω𝑖 (0) by a union of 𝐾𝑖 nonadjacent subdomains, i.e.,

Ω𝑖 (0) =
𝐾𝑖⋃
𝑘=1

Ω𝑖,𝑘 (0),

see Figure 1, without any change to the analysis.
We now consider Ω(0) to be evolving in time, resulting in a domain Ω(𝑡) at a later

time 𝑡. To this end introduce the velocity field

w : R0
+ × R𝑛 → R𝑛

together with the corresponding transformation Φ : R0
+ × R𝑛 → R𝑛 given by

d
d𝑡
Φ𝑡 (𝑥) = w(𝑡,Φ𝑡 (𝑥)), 𝑡 ∈ R+, Φ0 (𝑥) = 𝑥,

for all 𝑥 ∈ R𝑛. We will assume that this evolution has the properties described below.

Assumption 2.1. The velocity field w generates a transformation Φ such that
(i) Φ is an element in 𝐶1 (R0

+ × R𝑛,R𝑛) and satisfies the bound

sup
𝑡∈R+

∥Φ𝑡 ∥𝐶1 (𝐵𝑟 ,R𝑛 ) ≤ 𝐶 < ∞

for every fixed ball 𝐵𝑟 = {𝑥 ∈ R𝑛 : |𝑥 | < 𝑟}, where 𝐶 = 𝐶 (𝑟).



6 A. Alphonse, A. Djurdjevac, E. Engström, and E. Hansen

(ii) The inverse map Φ− : (𝑡, 𝑥) ↦→ (Φ𝑡 )−1 (𝑥) exists and satisfies the same regularity
and bound as Φ.

The domain at time 𝑡 is then defined as

Ω(𝑡) = Φ𝑡 (Ω(0)).

The above properties ofΦ imply thatΩ(𝑡) is also a bounded Lipschitz domain with boundary
𝜕Ω(𝑡) = Φ𝑡

(
𝜕Ω(0)

)
. Furthermore, the Jacobian 𝐷Φ𝑡 (𝑥) = {𝜕𝑥 𝑗Φ𝑡 (𝑥)𝑖}𝑖, 𝑗 is well defined

and its inverse is given by

(𝐷Φ𝑡 )−1 (𝑥) = (𝐷Φ−𝑡 )
(
Φ𝑡 (𝑥)

)
.

We also introduce the determinants

𝐽𝑡 (𝑥) = det
(
𝐷Φ𝑡 (𝑥)

)
and 𝐽−𝑡 (𝑥) = det

(
𝐷Φ−𝑡 (𝑥)

)
= 1/𝐽𝑡

(
Φ−𝑡 (𝑥)

)
.

Regarding the partition of the domain, let us write

Ω𝑖 (𝑡) = Φ𝑡
(
Ω𝑖 (0)

)
, 𝑖 = 1, 2,

for the evolution of the disjoint components. Once again, the assumed properties of Φ give
that all interiors are mapped to interiors and boundaries are mapped to boundaries, thus we
obtain the bounded Lipschitz subdomains Ω𝑖 (𝑡) with the boundaries

𝜕Ω𝑖 (𝑡) = Φ𝑡
(
𝜕Ω𝑖 (0)

)
, 𝑖 = 1, 2.

We also have

Φ𝑡
(
Γ(0)

)
= Φ𝑡

(
𝜕Ω1 (0) ∩ 𝜕Ω2 (0)

)
= Φ𝑡

(
𝜕Ω1 (0)

)
∩Φ𝑡

(
𝜕Ω2 (0)

)
= 𝜕Ω1 (𝑡) ∩ 𝜕Ω2 (𝑡),

and hence the interface Γ(0) betweenΩ1 (0) andΩ2 (0) is mapped onto the interface between
Ω1 (𝑡) and Ω2 (𝑡), which we shall call Γ(𝑡), i.e.,

Γ(𝑡) = 𝜕Ω1 (𝑡) ∩ 𝜕Ω2 (𝑡).

The set Γ(𝑡) is again assumed to be an (𝑛 − 1)-dimensional Lipschitz manifold. This setup
is exemplified in Figure 2. Next, we observe a few more properties of Φ. Let Ω(0) ⊂ 𝐵𝑟 ,
then Assumption 2.1 yields that

sup
𝑡∈R+

sup
𝑥∈𝐵𝑟

|Φ𝑡 (𝑥) | ≤ 𝐶.

Hence, there exists a ball 𝐵𝑅 that contains all trajectories of Φ starting in Ω(0), i.e., Ω(𝑡) ⊂
𝐵𝑅 for all 𝑡 ∈ R0

+. We can therefore view Φ and Φ− as maps restricted to 𝐵𝑟 and 𝐵𝑅,
respectively, where

Φ ∈ 𝐶𝑏
(
R0
+;𝐶1 (𝐵𝑟 ,R𝑛)

)
and Φ− ∈ 𝐶𝑏

(
R0
+;𝐶1 (𝐵𝑅,R𝑛)

)
. (5)

Furthermore, there are constants 𝑐, 𝐶 > 0 such that

𝑐 |𝑥 − 𝑦 | ≤ |Φ𝑡 (𝑥) −Φ𝑡 (𝑦) | ≤ 𝐶 |𝑥 − 𝑦 | and 𝑐 ≤ |𝐽𝑡 (𝑥) | ≤ 𝐶 (6)

for all 𝑥, 𝑦 ∈ 𝐵𝑟 and 𝑡 ∈ R0
+. These bounds also hold for Φ−𝑡 and 𝐽−𝑡 with 𝑥, 𝑦 ∈ 𝐵𝑅.
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Figure 2. An example of an evolving domain decomposition with an interior domain Ω1 and an
exterior domain Ω2.

3. Abstract time-evolving function spaces

In this section we start by generalizing parts of the abstract framework of [2, 3] to a semi-
infinite time interval. We then define a notion of a generalized Sobolev–Bochner space that
allows in particular for fractional-in-time exponents. This theory will enable us to define
the function spaces that we need on the various evolving domains and boundaries from the
previous section. We begin with a notion of compatibility, see also [2, Assumption 2.1].

Definition 3.1. Let 𝑋 ≡ {𝑋 (𝑡)}𝑡∈R0
+

be a family of real separable Hilbert spaces and let

𝜙𝑡 : 𝑋 (0) → 𝑋 (𝑡)

be a linear and invertible map, with its inverse denoted by 𝜙−𝑡 . The pair (𝑋, 𝜙) is said to
be compatible if

(i) 𝜙0 is the identity,
(ii) there exists a constant 𝐶 independent of 𝑡 ∈ R0

+ such that

∥𝜙𝑡𝑢∥𝑋 (𝑡 ) ≤ 𝐶 ∥𝑢∥𝑋 (0) for all 𝑢 ∈ 𝑋 (0),
∥𝜙−𝑡𝑢∥𝑋 (0) ≤ 𝐶 ∥𝑢∥𝑋 (𝑡 ) for all 𝑢 ∈ 𝑋 (𝑡),

(iii) for all 𝑢 ∈ 𝑋 (0), the map 𝑡 ↦→ ∥𝜙𝑡𝑢∥𝑋 (𝑡 ) is measurable.

If (𝑋, 𝜙) is compatible, then as done in [2, 3], we may define the 𝐿2-space as

𝐿2
𝑋 (R+) =

{
𝑢 : R+ →

⋃
𝑡∈R+

𝑋 (𝑡) × {𝑡} : 𝑡 ↦→
(
�̄�(𝑡), 𝑡

)
such that 𝜙− �̄� ∈ 𝐿2 (R+; 𝑋 (0)

)}
.

We will abuse notation and simply write 𝑢 instead of �̄�. This is a separable Hilbert space,
with the inner product

(𝑢, 𝑣)𝐿2
𝑋
(R+ ) =

∫
R+

(
𝑢(𝑡), 𝑣(𝑡)

)
𝑋 (𝑡 )d𝑡;
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compare with [3, Theorem 2.8]. The map

𝜙 : 𝐿2 (R+; 𝑋 (0)
)
→ 𝐿2

𝑋 (R+)

then acts as an isomorphism with an equivalence of norms, see [3, Lemma 2.10]. In addition,
if (𝑋, 𝜙) is compatible then so is (𝑋∗, (𝜙−)∗), where 𝜙∗ : 𝑋 (𝑡)∗ → 𝑋 (0)∗ denotes the dual
map of 𝜙. One also has that 𝐿2

𝑋
(R+)∗ � 𝐿2

𝑋∗ (R+) and

⟨𝑔, 𝑣⟩𝐿2
𝑋∗ (R+ )×𝐿2

𝑋
(R+ ) =

∫
R+

⟨𝑔(𝑡), 𝑣(𝑡)⟩𝑋 (𝑡 )∗×𝑋 (𝑡 )d𝑡

= ⟨𝜙∗𝑔, 𝜙−𝑣⟩𝐿2 (R+;𝑋 (0)∗ )×𝐿2 (R+;𝑋 (0) ) .

See [3, p.6 and Lemmas 2.14–15] for the above statement.

Definition 3.2. For a space 𝑌 ↩→ 𝐿2 (R+), we use the notation

𝑌𝑋 (R+) =
{
𝑣 ∈ 𝐿2

𝑋 (R+) : 𝜙−𝑣 ∈ 𝑌
(
R+; 𝑋 (0)

)}
.

The norm on 𝑌𝑋 (R+) is defined as

∥𝑣∥𝑌𝑋 (R+ ) = ∥𝜙−𝑣∥𝑌 (R+;𝑋 (0) ) .

A consequence of the above is that the restricted map

𝜙 : 𝑌
(
R+; 𝑋 (0)

)
→ 𝑌𝑋 (R+)

is by definition an isometric isomorphism. Note that the above definition of ∥ · ∥𝑌𝑋 (R+ )
yields an equivalent norm to ∥ · ∥𝐿2

𝑋
(R+ ) for 𝑌 = 𝐿2 (R+), due to compatibility of (𝑋, 𝜙).

However, the norms do not necessarily coincide.

Lemma 3.3. If (𝑋, 𝜙) is compatible and 𝑌
(
R+; 𝑋 (0)

)
is a separable Hilbert space, then

𝑌𝑋 (R+) is a separable Hilbert space.

Proof. Take a Cauchy sequence {𝑦𝑛} belonging to 𝑌𝑋 (R+). By definition, for every 𝜖 > 0,
there exists an 𝑁 such that if 𝑛, 𝑚 ≥ 𝑁 , we have

∥𝜙−𝑦𝑛 − 𝜙−𝑦𝑚∥𝑌 (R+;𝑋 (0) ) = ∥𝑦𝑛 − 𝑦𝑚∥𝑌𝑋 (R+ ) ≤ 𝜖 .

As 𝑌
(
R+; 𝑋 (0)

)
is a Hilbert space, 𝜙−𝑦𝑛 → 𝑧 in 𝑌

(
R+; 𝑋 (0)

)
to some 𝑧 ∈ 𝑌

(
R+; 𝑋 (0)

)
.

Since 𝑌
(
R+; 𝑋 (0)

)
is a subset of 𝐿2 (R+; 𝑋 (0)

)
and we have compatibility, it follows that

𝜙𝑧 ∈ 𝐿2
𝑋
. Hence, 𝜙𝑧 ∈ 𝑌𝑋 (R+). We have

∥𝑦𝑛 − 𝜙𝑧∥𝑌𝑋 (R+ ) = ∥𝜙−𝑦𝑛 − 𝑧∥𝑌 (R+;𝑋 (0) ) → 0

as 𝑛 tends to infinity. Thus, the sequence {𝑦𝑛} is convergent in 𝑌𝑋 (R+). This shows that
every Cauchy sequence converges, hence it is complete and a Hilbert space.
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For the separability, if {𝑒𝑖} is a countable orthonormal basis of 𝑌
(
R+; 𝑋 (0)

)
, we can

write an arbitrary 𝑧 ∈ 𝑌
(
R+; 𝑋 (0)

)
as 𝑧 =

∑(𝑧, 𝑒𝑖)𝑌 (R+;𝑋 (0) )𝑒𝑖 . Then we have

𝜙𝑧 =
∑
𝑖 (𝑧, 𝑒𝑖)𝑌 (R+;𝑋 (0) )𝜙𝑒𝑖 =

∑
𝑖 (𝜙𝑧, 𝜙𝑒𝑖)𝑌𝑋 (R+ )𝜙𝑒𝑖 .

Since any element of 𝑌𝑋 (R+) can be written as 𝜙𝑧 for some 𝑧 ∈ 𝑌
(
R+; 𝑋 (0)

)
and because

𝐿2
𝑋

and 𝐿2 (R+; 𝑋 (0)
)

are isomorphic via 𝜙, we see that {𝜙𝑒𝑖} is a countable dense subset
and thus the space is separable.

Consider a space 𝑌 ↩→ 𝐿2 (R+) and assume that 𝑌
(
R+; 𝑋 (0)

)
is a separable Hilbert

space. Next, introduce two compatible pairs (𝑋, 𝜙) and (𝑍, 𝜙), where 𝑍 (𝑡) ↩→ 𝑋 (𝑡) for all
𝑡 ∈ R+. The subset

𝑌
(
R+; 𝑋 (0)

)
∩ 𝐿2 (R+; 𝑍 (0)

)
⊆ 𝐿2 (R+; 𝑋 (0)

)
then also becomes a separable Hilbert space when equipped with the inner product

𝑢, 𝑣 ↦→ (𝑢, 𝑣)𝑌 (R+;𝑋 (0) ) + (𝑢, 𝑣)𝐿2 (R+;𝑍 (0) ) .

The same holds for 𝑌𝑋 (R+) ∩ 𝐿2
𝑍
(R+) ⊆ 𝐿2

𝑋
(R+) by Lemma 3.3. The restriction of the map

𝜙 : 𝐿2 (R+; 𝑋 (0)
)
→ 𝐿2

𝑋
(R+), i.e.,

𝜙 : 𝑌
(
R+; 𝑋 (0)

)
∩ 𝐿2 (R+; 𝑍 (0)

)
→ 𝑌𝑋 (R+) ∩ 𝐿2

𝑍 (R+),

is an isometric isomorphism.

4. Compatibility for spaces defined on evolving domains

In this section we wish to apply the theory of Section 3 to concrete function spaces on
evolving domains and boundaries. This mainly involves checking that compatibility holds
in the sense of Definition 3.1. The results here improve those present in [2–4] because we
assume much weaker regularity on the domains and the evolution than there.

Let𝑀 ≡ {𝑀 (𝑡)}𝑡∈R0
+

be a family of Lipschitz domains, with𝑀 (0) ⊂ 𝐵𝑟 ⊂R𝑛 and𝑀 (𝑡) ⊂
𝐵𝑅 ⊂ R𝑛, playing the role of Ω𝑖 or Ω. Similarly, let 𝑆 be a family of (𝑛 − 1)-dimensional
Lipschitz manifolds representing either 𝜕Ω𝑖 , 𝜕Ω, or Γ. We refer to [24, Sections 6.2–3]
and [30] for an in-depth treatment of Lipschitz manifolds and the related surface integrals.

In the setting of evolving domains, we will consider two families of compatible pairs
given by the maps 𝜙 and 𝜓 relating to function spaces over 𝑀 and 𝑆, respectively.

Definition 4.1. The maps 𝜙 and 𝜓, together with their inverses, are identified as the
compositions

(i) 𝜙𝑡𝑢 = 𝑢 ◦Φ−𝑡 and 𝜙−𝑡𝑢 = 𝑢 ◦Φ𝑡 ,
(ii) 𝜓𝑡𝑢 = 𝑢 ◦

(
Φ−𝑡 |𝑆 (𝑡 )

)
and 𝜓−𝑡𝑢 = 𝑢 ◦

(
Φ𝑡 |𝑆 (0)

)
,
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respectively.

Note that this choice of 𝜙 and 𝜓 trivially fulfills the first compatibility property of Defi-
nition 3.1. For notational simplicity, we also make use of the notation 𝜙, 𝜓 for matrix-valued
maps, e.g., for 𝐴 : 𝑀 (0) → R𝑛×𝑛 we can write

𝜙−𝑡 𝐴(𝑥) = (𝐴 ◦Φ𝑡 ) (𝑥) = 𝐴
(
Φ𝑡 (𝑥)

)
.

The task is now to prove the remaining compatibility properties for the function spaces
arising when deriving the weak formulation of (1).

4.1. Spaces on the interior

Lemma 4.2. If Assumption 2.1 holds then (𝐿2 (𝑀), 𝜙) and (𝐻1 (𝑀), 𝜙) are compatible
pairs.

Proof. We prove the 𝐻1 case as the 𝐿2 case follows by a simpler argument. To prove the
second property of Definition 3.1, consider 𝑢 ∈ 𝐻1 (𝑀 (0)

)
and 𝑣 = 𝜙𝑡𝑢 ∈ 𝐻1 (𝑀 (𝑡)

)
. One

then has, pointwise a.e., the formulae

∇(𝜙−𝑡 𝑣) = (𝐷Φ𝑡 )𝑇𝜙−𝑡 (∇𝑣) ⇔ ∇𝑢 = (𝐷Φ𝑡 )𝑇𝜙−𝑡 (∇𝜙𝑡𝑢) ⇔
𝜙−𝑡 (∇𝜙𝑡𝑢) = (𝐷Φ𝑡 )−T∇𝑢 ⇔ 𝜙−𝑡 (∇𝜙𝑡𝑢) = (𝜙−𝑡𝐷Φ−𝑡 )T∇𝑢.

This yields the identities

∥𝜙𝑡𝑢∥2
𝐻1 (𝑀 (𝑡 ) ) =

∫
𝑀 (𝑡 )

|𝜙𝑡𝑢 |2 + |∇𝜙𝑡𝑢 |2 d𝑥𝑡

=

∫
𝑀 (0)

𝜙−𝑡
(
|𝜙𝑡𝑢 |2 + |∇𝜙𝑡𝑢 |2

)
|𝐽𝑡 | d𝑥0

=

∫
𝑀 (0)

𝑢2 |𝐽𝑡 | + |(𝜙−𝑡𝐷Φ−𝑡 )T∇𝑢 |2 |𝐽𝑡 | d𝑥0. (7)

By Assumption 2.1 we have 𝐷Φ− ∈ 𝐶 (R0
+ ×R𝑛,R𝑛×𝑛), |𝐽 | ∈ 𝐶 (R0

+ ×R𝑛,R), and the bound

sup
𝑡∈R+

sup
𝑥∈𝑀 (0)

| (𝜙−𝑡𝐷Φ−𝑡 )T (𝑥) |22 |𝐽𝑡 (𝑥) |

≤ sup
𝑡∈R+

sup
𝑥∈𝑀 (0) ,𝑦∈𝑀 (𝑡 )

| (𝐷Φ−𝑡 ) (𝑦) |2𝐹 |𝐽𝑡 (𝑥) |

≤ sup
𝑡∈R+

sup
𝑥∈𝐵𝑟 ,𝑦∈𝐵𝑅

max
𝑖, 𝑗=1,...,𝑛

6𝑛2 |𝜕𝑦 𝑗Φ−𝑡 (𝑦)𝑖 |2 |𝜕𝑥 𝑗Φ𝑡 (𝑥)𝑖 |𝑛

≤ 𝐶 (𝑛)
(
sup
𝑡∈R+

∥Φ−𝑡 ∥𝐶1 (𝐵𝑅 ,R𝑛 )
)2 ( sup

𝑡∈R+
∥Φ𝑡 ∥𝐶1 (𝐵𝑟 ,R𝑛 )

)𝑛
< ∞,

(8)

where | · |2 and | · |𝐹 refer to the Euclidean and Frobenius matrix norms respectively. Hence,
the second term of (7) is bounded by 𝐶∥∇𝑢∥2

𝐿2 (𝑀 (0) ,R𝑛 ) and a similar argument for the first
term yields that

∥𝜙𝑡𝑢∥𝐻1 (𝑀 (𝑡 ) ) ≤ 𝐶 ∥𝑢∥𝐻1 (𝑀 (0) ) for all 𝑢 ∈ 𝐻1 (𝑀 (0)
)
,
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with a constant 𝐶 independent of 𝑡 ∈ R0
+. The reverse bound, i.e., ∥𝜙−𝑡𝑢∥𝐻1 (𝑀 (0) ) ≤

𝐶 ∥𝑢∥𝐻1 (𝑀 (𝑡 ) ) , holds as the very same properties are assumed for Φ and Φ− .
We finally consider the third property of Definition 3.1. Again by Assumption 2.1, we

have that |𝐽 | ∈ 𝐿∞
(
R+; 𝐿∞ (𝑀 (0))

)
and hence |𝐽 | : R+ → 𝐿∞

(
𝑀 (0)

)
is strongly measurable.

By Pettis’ theorem, it is also weakly measurable. For an element 𝑣 ∈ 𝐿∞
(
𝑀 (0)

)
the functional

𝑔(𝑣) =
∫
𝑀 (0) 𝑢

2𝑣 d𝑥0 clearly satisfies 𝑔 ∈ 𝐿∞
(
𝑀 (0)

)∗ since 𝑢 ∈ 𝐿2 (𝑀 (0)
)
. Thus

𝑡 ↦→ 𝑔( |𝐽𝑡 |) =
∫
𝑀 (0)

𝑢2 |𝐽𝑡 | d𝑥0

is measurable. This yields measurability of the first term of the integral (7). A similar
argument gives measurability of the entire integral.

4.2. Spaces on the boundary

Let us now address function spaces defined over boundaries.

Lemma 4.3. If Assumption 2.1 holds then
(
𝐿2 (𝑆), 𝜓

)
is a compatible pair.

Proof. For simplicity, we first consider the case 𝑛 = 2. The curve 𝑆(0) is then the union of
finitely many open, overlapping sets

𝑆ℓ (0) = {𝑥 ∈ R2 : 𝑥(𝜉) = �̃�−1
ℓ

(
𝜉, 𝜎ℓ (𝜉)

)T for 𝜉 ∈ [−𝑎, 𝑎]}.

Here, 𝜎ℓ : [−𝑎, 𝑎] → R are Lipschitz continuous maps, and �̃�ℓ are affine transformations,
i.e., �̃�ℓ𝑥 = 𝐴ℓ𝑥 + 𝑏ℓ , where 𝐴ℓ are orthonormal matrices with det𝐴ℓ = 1. The curve integral
over 𝑆(0) can then be defined as∫

𝑆 (0)
𝑣 d𝑠0 =

𝑀∑︁
ℓ=1

∫ 𝑎

−𝑎
(𝜑ℓ𝑣)

(
𝑥(𝜉)

)
|𝑥𝜉 (𝜉) | d𝜉,

with the tangential derivative 𝑥𝜉 = 𝐴−1
ℓ
(1, 𝜎′

ℓ
)T ∈ 𝐿∞

(
𝑆ℓ (0), R2) , for any partition of

unity {𝜑ℓ } ⊂ 𝐶 (𝑆(0)) of the curve 𝑆(0). Note that the regularity of 𝑥𝜉 follows by the
Lipschitz continuity of 𝜎ℓ , see [24, Theorem 6.2.14]. Also observe that the denominator
|𝑥𝜉 |2 = 1 + (𝜎′

ℓ
)2 is nonzero.

Let 𝑦(𝜉) = Φ𝑡𝑥(𝜉), then 𝑦 𝜉 = DΦ𝑡 (𝑥)𝑥𝜉 . Furthermore, if {𝜑ℓ } ⊂ 𝐶
(
𝑆(𝑡)

)
is a partition

of unity of the curve 𝑆(𝑡) then {𝜓−𝑡𝜑ℓ } ⊂ 𝐶
(
𝑆(0)

)
becomes a partition of unity of 𝑆(0).

We then have∫
𝑆 (𝑡 )

𝑣(𝑦) d𝑠𝑡 =
𝑀∑︁
ℓ=1

∫ 𝑎

−𝑎
(𝜑ℓ𝑣)

(
𝑦(𝜉)

)
|𝑦 𝜉 (𝜉) | d𝜉

=

𝑀∑︁
ℓ=1

∫ 𝑎

−𝑎
(𝜑ℓ𝑣)

(
Φ𝑡𝑥(𝜉))

����DΦ𝑡
(
𝑥(𝜉)

) 𝑥𝜉 (𝜉)
|𝑥𝜉 (𝜉) |

���� |𝑥𝜉 (𝜉) |d𝜉
=

∫
𝑆 (0)

(𝜓−𝑡 𝑣) (𝑥) 𝜔2,𝑡 (𝑥) d𝑠0,

(9)
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where 𝜔2,𝑡 (𝑥) = |DΦ𝑡 (𝑥)𝜏(𝑥) | with 𝜏 ∈ 𝐿∞
(
𝑆(0), R2) denoting the normalized tangent

vector of 𝑆(0). By Assumption 2.1 we obtain that 𝜔2 ∈ 𝐿∞
(
R+; 𝐿∞

(
𝑆(0))

)
as

𝜔2,𝑡 (𝑥) ≤ |DΦ𝑡 (𝑥) |2 |𝜏(𝑥) |2 ≤ sup
𝑦∈𝑆 (0)

|DΦ𝑡 (𝑦) |𝐹 · 1

≤ sup
𝑡∈R+

sup
𝑦∈𝐵𝑟

max
𝑖, 𝑗=1,...,𝑛

𝑛|𝜕𝑦 𝑗Φ𝑡 (𝑦)𝑖 | ≤ 𝐶 sup
𝑡∈R+

∥Φ𝑡 ∥𝐶1 (𝐵𝑟 ,R𝑛 ) < ∞
(10)

for a.e. 𝑥 ∈ 𝑆(0) and every 𝑡 ∈ R+.
From (9) it is clear that 𝜓−𝑡 𝑣 ∈ 𝐿1 (𝑆(0)) if 𝑣 ∈ 𝐿1 (𝑆(𝑡)) and 𝜓𝑡 𝑣 ∈ 𝐿1 (𝑆(𝑡)) if 𝑣 ∈

𝐿1 (𝑆(0)) . Next, consider 𝑢 ∈ 𝐿2 (𝑆(0)) . Replacing 𝑣 by 𝜓𝑡𝑢2 in (9) yields that

∥𝜓𝑡𝑢∥𝐿2 (𝑆 (𝑡 ) ) = ∥𝑢√𝜔2,𝑡 ∥𝐿2 (𝑆 (0) ) ≤ 𝐶∥𝑢∥𝐿2 (𝑆 (0) ) .

Here, the constant 𝐶 is uniform in time by (10). The reverse bound of Definition 3.1 follows
by simply replacing 𝑆(𝑡) with 𝑆(0) and vice versa in the above argumentation.

The measurability, i.e., the third property of Definition 3.1, can be shown in a similar
way to Lemma 4.2. Hence,

(
𝐿2 (𝑆), 𝜓

)
is a compatible pair for 𝑛 = 2.

The compatibility for 𝑛 = 3 follows in the same fashion with

𝑆ℓ (0) = {𝑥 ∈ R3 : 𝑥(𝜉) = �̃�−1
ℓ

(
𝜉1, 𝜉2, 𝜎ℓ (𝜉)

)T for 𝜉 ∈ [−𝑎, 𝑎]2},

𝑥𝜉 replaced by 𝜕𝜉1𝑥 × 𝜕𝜉2𝑥, and 𝜔2,𝑡 replaced by

𝜔3,𝑡
(
𝑥(𝜉)

)
=

|DΦ𝑡
(
𝑥(𝜉)

)
𝜕𝜉1𝑥(𝜉) × DΦ𝑡

(
𝑥(𝜉)

)
𝜕𝜉2𝑥(𝜉) |

|𝜕𝜉1𝑥(𝜉) × 𝜕𝜉2𝑥(𝜉) |
.

Note that the replaced terms are all in 𝐿∞, |𝜕𝜉1𝑥 × 𝜕𝜉2𝑥 |2 = 1 +∑2
𝑖=1 (𝜕𝜉𝑖𝜎ℓ)2 is nonzero,

and the bound (10) holds as 𝐴𝑥 × 𝐴𝑦 = det(𝐴)𝐴−T𝑥 × 𝑦.

Regarding Sobolev spaces over the manifolds 𝑆, we introduce the space 𝐻1/2 (𝑆(𝑡))
defined as

𝐻1/2 (𝑆(𝑡)) = {𝑢 ∈ 𝐿2 (𝑆(𝑡)) : ∥𝑢∥𝐻1/2 (𝑆 (𝑡 ) ) < ∞} with

∥𝑢∥𝐻1/2 (𝑆 (𝑡 ) ) =
(
|𝑢 |2
𝐻1/2 (𝑆 (𝑡 ) ) + ∥𝑢∥2

𝐿2 (𝑆 (𝑡 ) )

)1/2
and

|𝑢 |𝐻1/2 (𝑆 (𝑡 ) ) =
( ∫

𝑆 (𝑡 )

∫
𝑆 (𝑡 )

|𝑢(𝑥) − 𝑢(𝑦) |2

|𝑥 − 𝑦 |𝑑
d𝑠𝑡 d𝑠𝑡

)1/2
.

Denoting the extension by zero from Γ(𝑡) to 𝜕Ω𝑖 (𝑡) by 𝑒𝜕Ω𝑖 (𝑡 ) , we also define the Lions–
Magenes space as

Λ(𝑡) = {𝑢 ∈ 𝐿2 (Γ(𝑡)) : 𝑒𝜕Ω𝑖 (𝑡 )𝑢 ∈ 𝐻1/2 (𝜕Ω𝑖 (𝑡))} with
∥𝑢∥Λ(𝑡 ) = ∥𝑒𝜕Ω𝑖 (𝑡 )𝑢∥𝐻1/2 (𝜕Ω𝑖 (𝑡 ) ) .

By [34, Lemma A.8] one has the identification Λ(𝑡) � [𝐻1/2
0

(
Γ(𝑡)

)
, 𝐿2 (Γ(𝑡))]1/2, i.e., Λ(𝑡)

is independent of 𝑖 = 1, 2. The space 𝐻1/2 (𝑆(𝑡)) is a separable Hilbert space, and the same
therefore holds for Λ(𝑡).
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Lemma 4.4. If Assumption 2.1 holds then
(
𝐻1/2 (𝑆), 𝜓

)
is a compatible pair.

Proof. The proof is not dissimilar to the discussion in [4, §5.4.1]. With the same notation
as in Lemma 4.3 we have

|𝜓𝑡𝑢 |2𝐻1/2 (𝑆 (𝑡 ) ) =

∫
𝑆 (𝑡 )

∫
𝑆 (𝑡 )

|𝜓𝑡𝑢(𝑦) − 𝜓𝑡𝑢( �̂�) |2
|𝑦 − �̂� |𝑛 d𝑠𝑡d𝑠𝑡

=

∫
𝑆 (𝑡 )

∫
𝑆 (𝑡 )

|𝑢(Φ−𝑡 (𝑦)) − 𝑢(Φ−𝑡 ( �̂�)) |2
|𝑦 − �̂� |𝑛 d𝑠𝑡d𝑠𝑡

=

∫
𝑆 (0)

∫
𝑆 (0)

|𝑢(𝑥) − 𝑢(𝑥) |2
|Φ𝑡 (𝑥) −Φ𝑡 (𝑥) |𝑛

𝜔𝑛,𝑡 (𝑥)𝜔𝑛,𝑡 (𝑥) d𝑠0d𝑠0 (11)

≤ 𝐶
∫
𝑆 (0)

∫
𝑆 (0)

|𝑢(𝑥) − 𝑢(𝑥) |2
|𝑥 − 𝑥 |𝑛 𝜔𝑛,𝑡 (𝑥)𝜔𝑛,𝑡 (𝑥) d𝑠0d𝑠0

≤ 𝐶
∫
𝑆 (0)

∫
𝑆 (0)

|𝑢(𝑥) − 𝑢(𝑥) |2
|𝑥 − 𝑥 |𝑛 d𝑠0d𝑠0,

where the constant 𝐶 is uniform in time. The bounds follow as Φ𝑡 and 𝜔𝑛 fulfill (6)
and (10), respectively. Since the bound for ∥𝜓𝑡𝑢∥𝐿2 (𝑆 (𝑡 ) ) follows as in Lemma 4.3 we have
𝜓𝑡 : 𝐻1/2 (𝑆(0)) → 𝐻1/2 (𝑆(𝑡)) and

∥𝜓𝑡𝑢∥𝐻1/2 (𝑆 (𝑡 ) ) ≤ 𝐶∥𝑢∥𝐻1/2 (𝑆 (0) ) .

A similar argument gives the same result for 𝜓−𝑡 .
Finally, we prove the third property of Definition 3.1. By Assumption 2.1 we have that

Φ : R0
+ → 𝐶

(
𝑆(0)

)
and 𝜔𝑛 : R+ → 𝐿∞

(
𝑆(0)

)
are continuous. Hence, the integrand in (11)

is continuous in time for all fixed 𝑥, 𝑥 excluding the zeros set where 𝜔𝑛,𝑡 is undefined and
𝑥 = 𝑥. The set violating the latter condition is again of measure zero. The said integrand is
bounded from above by

𝐶
|𝑢(𝑥) − 𝑢(𝑥) |2

|𝑥 − 𝑥 |𝑛
via (6) and (10), and this function is integrable and independent of time. We may therefore
apply Lebesgue’s dominated convergence theorem to deduce that the right-hand side of
(11) (and hence also ∥𝜓𝑡𝑢∥𝐻1/2 (𝑆 (𝑡 ) ) ) is continuous with respect to 𝑡, thereby yielding the
sought-after measurability.

Lemma 4.5. If Assumption 2.1 holds then

𝑒𝜕Ω𝑖 (𝑡 )𝜓𝑡𝑢 = 𝜓𝑡𝑒𝜕Ω𝑖 (0)𝑢

for all 𝑢 ∈ 𝐿2 (Γ(0)) .
Proof. By Lemma 4.3, one obtains that 𝑒𝜕Ω𝑖 (𝑡 )𝜓𝑡𝑢 and 𝜓𝑡𝑒𝜕Ω𝑖 (0)𝑢 are in 𝐿2 (𝜕Ω𝑖 (𝑡)) . We
therefore have, for a.e. 𝑥 ∈ 𝜕Ω𝑖 (𝑡),

(𝑒𝜕Ω𝑖 (𝑡 )𝜓𝑡𝑢) (𝑥) =
{
(𝜓𝑡𝑢) (𝑥) if 𝑥 ∈ Γ(𝑡)
0 if 𝑥 ∈ 𝜕Ω𝑖 (𝑡)\Γ(𝑡),
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while on the other hand

(𝜓𝑡𝑒𝜕Ω𝑖 (0)𝑢) (𝑥) = (𝑒𝜕Ω𝑖 (0)𝑢)
(
Φ−𝑡 (𝑥)

)
=

{
𝑢(Φ−𝑡 (𝑥)) if Φ−𝑡 (𝑥) ∈ Γ(0)
0 if Φ−𝑡 (𝑥) ∈ 𝜕Ω𝑖 (0)\Γ(0)

=

{
(𝜓𝑡𝑢) (𝑥) if 𝑥 ∈ Γ(𝑡)
0 if 𝑥 ∈ 𝜕Ω𝑖 (𝑡)\Γ(𝑡).

Here we used that Φ𝑡
(
𝜕Ω𝑖 (0)

)
= 𝜕Ω𝑖 (𝑡) and Φ𝑡

(
Γ(0)

)
= Γ(𝑡).

Lemma 4.6. If Assumption 2.1 holds then (Λ, 𝜓) is a compatible pair.

Proof. Let 𝑢 ∈ Λ(0) then 𝑒𝜕Ω𝑖 (0)𝑢 ∈ 𝐻1/2 (𝜕Ω𝑖 (0)). By Lemmas 4.4 and 4.5, one obtains
that

𝜓𝑡𝑒𝜕Ω𝑖 (0)𝑢 = 𝑒𝜕Ω𝑖 (𝑡 )𝜓𝑡𝑢 ∈ 𝐻1/2 (𝜕Ω𝑖 (𝑡)).

From the definition of Λ(𝑡) (cf. [10, Lemma 4.1]), there is a unique element 𝑣 ∈ Λ(𝑡) such
that 𝑒𝜕Ω𝑖 (𝑡 ) 𝑣 = 𝑒𝜕Ω𝑖 (𝑡 )𝜓𝑡𝑢, i.e., 𝜓𝑡𝑢 = 𝑣. Hence, 𝜓𝑡 maps Λ(0) into Λ(𝑡). By the definition
of ∥·∥Λ(𝑡 ) together Lemmas 4.4 and 4.5, we have

∥𝜓𝑡𝑢∥Λ(𝑡 ) =
𝑒𝜕Ω𝑖 (𝑡 )𝜓𝑡𝑢


𝐻1/2 (𝜕Ω𝑖 (𝑡 ) ) =

𝜓𝑡𝑒𝜕Ω𝑖 (0)𝑢

𝐻1/2 (𝜕Ω𝑖 (𝑡 ) )

≤ 𝐶
𝑒𝜕Ω𝑖 (0)𝑢


𝐻1/2 (𝜕Ω𝑖 (0) ) = 𝐶 ∥𝑢∥Λ(0) .

The same line of reasoning can be made for 𝜓− and the measurability of 𝑡 ↦→ ∥𝜓𝑡𝑢∥Λ(𝑡 )
follows just as in Lemma 4.4. Hence, (Λ, 𝜓) is a compatible pair.

To tie together the functions over𝑀 and 𝑆 we consider the linear, bounded, and surjective
trace operator 𝑇𝜕Ω𝑖 (𝑡 ) : 𝐻1 (Ω𝑖 (𝑡)) → 𝐻1/2 (𝜕Ω𝑖 (𝑡)) , see [24, Theorem 6.8.13], together
with the space

𝑉𝑖 (𝑡) = {𝑢 ∈ 𝐻1 (Ω𝑖 (𝑡)) : (𝑇𝜕Ω𝑖 (𝑡 )𝑢)
��
𝜕Ω𝑖 (𝑡 )\Γ (𝑡 ) = 0}.

The spaces 𝑉𝑖 (𝑡) and 𝐻1
0
(
Ω𝑖 (𝑡)

)
are both equipped with the norm ∥ · ∥𝐻1 (Ω𝑖 (𝑡 ) ) and are

separable Hilbert spaces. For future reference, we also introduce the trace operator on 𝑉𝑖 (𝑡)
by

𝑇𝑖,𝑡 : 𝑉𝑖 (𝑡) → Λ(𝑡), 𝑢 ↦→ (𝑇𝜕Ω𝑖 (𝑡 )𝑢)
��
Γ (𝑡 ) ,

which is again linear, bounded, and surjective, see [10, Lemma 4.4].

Lemma 4.7. If Assumption 2.1 holds then

𝑇𝜕Ω𝑖 (𝑡 )𝜙𝑡𝑢 = 𝜓𝑡𝑇𝜕Ω𝑖 (0)𝑢 and 𝑇𝑖,𝑡𝜙𝑡 𝑣 = 𝜓𝑡𝑇𝑖,0𝑣

for all 𝑢 ∈ 𝐻1 (Ω𝑖 (0)) and 𝑣 ∈ 𝑉𝑖 (0).
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Proof. For 𝜑 ∈ 𝐶∞ (Ω𝑖 (0)), we have

𝑇𝜕Ω𝑖 (𝑡 ) (𝜙𝑡𝜑) = 𝑇𝜕Ω𝑖 (𝑡 )
(
𝜑 ◦Φ−𝑡 ) = (𝜑 ◦Φ−𝑡 ) |𝜕Ω𝑖 (𝑡 ) ,

with the second equality because 𝜑 ◦Φ−𝑡 ∈ 𝐶 (Ω𝑖 (0)) due to (5). We also have

𝜓𝑡 (𝑇𝜕Ω𝑖 (0)𝜑) = 𝜓𝑡 (𝜑 |𝜕Ω𝑖 (0) ) = 𝜑|𝜕Ω𝑖 (0) ◦ (Φ−𝑡 |𝜕Ω𝑖 (𝑡 ) ) = (𝜑 ◦Φ−𝑡 ) |𝜕Ω𝑖 (𝑡 ) ,

with the final equality because Φ𝑡 maps 𝜕Ω𝑖 (0) to 𝜕Ω𝑖 (𝑡).
For an arbitrary 𝑢 ∈ 𝐻1 (Ω𝑖 (0)) take a sequence {𝑢𝑛} ⊂ 𝐶∞ (𝜕Ω𝑖 (0)) converging to 𝑢.

One then has the equality

𝑇𝜕Ω𝑖 (𝑡 ) (𝜙𝑡𝑢𝑛) = 𝜓𝑡 (𝑇𝜕Ω𝑖 (0)𝑢𝑛).

The trace operators 𝑇𝜕Ω𝑖 (𝑠) : 𝐻1 (Ω𝑖 (𝑠)) → 𝐻1/2 (𝜕Ω𝑖 (𝑠)) , 𝑠 = 0, 𝑡, are continuous and,
by Lemmas 4.2 and 4.4, the same holds for 𝜙𝑡 :𝐻1 (Ω𝑖 (0))→𝐻1 (Ω𝑖 (𝑡)) and𝜓𝑡 :𝐻1/2 (𝜕Ω𝑖 (0))→
𝐻1/2 (𝜕Ω𝑖 (𝑡)) . Hence, we obtain that the lemma’s first equality holds in 𝐻1/2 (𝜕Ω𝑖 (𝑡)) . The
second equality follows by Lemma 4.6 and the same line of argumentation. The only differ-
ence is that the restrictions are made to Γ instead of 𝜕Ω𝑖 , and {𝑢𝑛} ⊂ {𝜑 ∈ 𝐶∞ (𝜕Ω𝑖 (0)) :
𝜑 |𝜕Ω𝑖 (0)\Γ (0) = 0}.

Lemma 4.8. If Assumption 2.1 holds then
(
𝐻1

0 (Ω), 𝜙
)
,
(
𝐻1

0 (Ω𝑖), 𝜙
)
, and (𝑉𝑖 , 𝜙) are all

compatible pairs.

Proof. We prove the𝑉𝑖 case as the others follow directly by combining Lemmas 4.2 and 4.7.
For 𝑢 ∈ 𝑉𝑖 (0) ⊂ 𝐻1 (Ω𝑖 (0)) we have 𝜙𝑡𝑢 ∈ 𝐻1 (Ω𝑖 (𝑡)) and (𝑇𝜕Ω𝑖 (0)𝑢𝑛)

��
𝜕Ω𝑖 (0)\Γ (0) = 0. As

{𝜑 ∈ 𝐶∞ (𝜕Ω𝑖 (0)) : 𝜑|𝜕Ω𝑖 (0)\Γ (0) = 0} is dense in 𝑉𝑖 (0), we can choose a sequence {𝑢𝑛}
in this dense subset such that it converges to 𝑢. Lemma 4.7 then implies that

(𝑇𝜕Ω𝑖 (𝑡 )𝜙𝑡𝑢𝑛
) ��
𝜕Ω𝑖 (𝑡 )\Γ (𝑡 ) = (𝜓𝑡𝑇𝜕Ω𝑖 (0)𝑢𝑛)

��
𝜕Ω𝑖 (𝑡 )\Γ (𝑡 )

= ( 𝑢𝑛 |𝜕Ω𝑖 (0) ) ◦ (Φ−𝑡 |𝜕Ω𝑖 (𝑡 )\Γ (𝑡 ) ) = 𝑢𝑛 |𝜕Ω𝑖 (0)\Γ (0) = 0.
(12)

Here, the second-to-last equality follows asΦ𝑡 maps 𝜕Ω𝑖 (0)\Γ(0) to 𝜕Ω𝑖 (𝑡)\Γ(𝑡). The map
𝑇𝜕Ω𝑖 (𝑡 )𝜙𝑡 : 𝐻1 (Ω𝑖 (0)) → 𝐻1/2 (𝜕Ω𝑖 (𝑡)) is continuous by Lemma 4.2, and taking the limit
in (12) yields that (𝑇𝜕Ω𝑖 (𝑡 )𝜙𝑡𝑢

) ��
𝜕Ω𝑖 (𝑡 )\Γ (𝑡 ) = 0 in 𝐿2 (𝜕Ω𝑖 (𝑡)\Γ(𝑡)) . In conclusion, 𝜙 maps

𝑉𝑖 (0) into𝑉𝑖 (𝑡), and the same reasoning can be made for 𝜙− . The bounds and measurability
stated in Definition 3.1 follow as for 𝐻1 (Ω𝑖 (𝑡)) in Lemma 4.2. Thus, (𝑉𝑖 , 𝜙) is a compatible
pair.

Due to the results derived in Sections 3 and 4, the maps (𝜙, 𝜓) are isomorphisms with
equivalent norms on all the Sobolev–Bochner spaces and their intersections appearing in
the rest of the paper, with the one exception of the space 𝐻1

0
(
R+;𝐻−1 (Ω𝑖 (0))

)
.
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5. Weak formulation and existence of solutions

We now address existence of weak solutions for (1). First, we set the stage. Let 𝑀 once
more play the role of Ω𝑖 ,Ω, where 𝑀 (0) ⊂ 𝐵𝑟 and 𝑀 (𝑡) ⊂ 𝐵𝑅. Furthermore, 𝑔 will either
denote 𝑓 , the right-hand side of (1), or its restriction 𝑓𝑖 to Ω𝑖 . Throughout this section 𝑋
will denote 𝐻1

0 (Ω) or 𝐻1
0 (Ω𝑖), and

𝑈 = 𝐻1
𝐿2 (𝑀 ) (R+) ∩ 𝐿

2
𝑋 (R+).

Definition 5.1. The weak form of (1) and its counterpart onΩ𝑖 (which all have homogeneous
initial conditions) can be formulated as finding 𝑢 ∈ 𝐿2

𝑋
(R+) such that

𝑎(𝑢, 𝑣) = 𝑑 (𝜙−𝑢, 𝜙−𝑣) + 𝑐(𝑢, 𝑣) = ⟨𝑔, 𝑣⟩ for all 𝑣 ∈ 𝑈, (13)

where

𝑑 (𝑢, 𝑣) = −
∫
R+

∫
𝑀 (0)

𝑢 𝜕𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡, and 𝑐(𝑢, 𝑣) =
∫
R+

∫
𝑀 (𝑡 )

𝛼∇𝑢 · ∇𝑣 + 𝛽𝑢𝑣 d𝑥𝑡d𝑡.

The weak form can be derived as follows. First, note that we formally have the identity
d
d𝑡
𝑢
(
𝑡,Φ𝑡 (𝑥)

)
= (𝜕𝑡𝑢 + ∇𝑢 · w)

(
𝑡,Φ𝑡 (𝑥)

)
⇔ d

d𝑡
𝜙−𝑡𝑢 = 𝜙−𝑡 ¤𝑢 (14)

and Jacobi’s formula
𝑑

𝑑𝑡
𝐽𝑡 (𝑥) = ∇ · w

(
𝑡,Φ𝑡 (𝑥)

)
𝐽𝑡 (𝑥) ⇔ d

d𝑡
𝐽𝑡 = 𝜙−𝑡 (∇ · w)𝐽𝑡 . (15)

Observe that if Jacobi’s formula holds then it implies that d|𝐽𝑡 |/d𝑡 = 𝜙−𝑡 (∇ ·w) |𝐽𝑡 |. Consider
sufficiently regular functions 𝑢, 𝑣 such that 𝜙−𝑡

(
𝑢(𝑡)𝑣(𝑡)

)
decays sufficiently rapidly as 𝑡

tends to infinity and 𝑣(𝑡) |𝑆 (𝑡 ) = 0. Integration by parts in time together with (14) and (15)
then gives∫

R+

∫
𝑀 (𝑡 )

¤𝑢𝑣 d𝑥𝑡d𝑡 =
∫
R+

∫
𝑀 (0)

𝜙−𝑡 ¤𝑢 𝜙−𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡

=

∫
R+

∫
𝑀 (0)

d
d𝑡

(𝜙−𝑡𝑢) 𝜙−𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡

= −
∫
R+

∫
𝑀 (0)

𝜙−𝑡𝑢
d
d𝑡

(𝜙−𝑡 𝑣 |𝐽𝑡 |) d𝑥0d𝑡

+ lim
𝜏→∞

∫
𝑀 (0)

𝜙− (𝑢𝑣) |𝑡=𝜏 |𝐽𝜏 | d𝑥0 −
∫
𝑀 (0)

(𝑢𝑣) |𝑡=0 |𝐽0 | d𝑥0

= −
∫
R+

∫
𝑀 (0)

𝜙−𝑡𝑢
( d
d𝑡

(𝜙−𝑡 𝑣) |𝐽𝑡 | + 𝜙−𝑡 (∇ · w) |𝐽𝑡 |
)

d𝑥0d𝑡

−
∫
𝑀 (0)

(𝑢𝑣) |𝑡=0 d𝑥0

= −
∫
R+

∫
𝑀 (0)

𝜙−𝑡𝑢
d
d𝑡

(𝜙−𝑡 𝑣) |𝐽𝑡 | d𝑥0d𝑡 −
∫
R+

∫
𝑀 (𝑡 )

(∇ · w)𝑢𝑣 d𝑥𝑡d𝑡

−
∫
𝑀 (0)

(𝑢𝑣) |𝑡=0 d𝑥0.
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The above equality and integration by parts in space yields∫
R+

∫
𝑀 (𝑡 )

(
¤𝑢 − ∇ · (𝛼∇𝑢) + (∇ · w + 𝛽)𝑢

)
𝑣 d𝑥𝑡d𝑡

= −
∫
R+

∫
𝑀 (0)

𝜙−𝑡𝑢
d
d𝑡

(𝜙−𝑡 𝑣) |𝐽𝑡 | d𝑥0d𝑡 −
∫
R+

∫
𝑀 (𝑡 )

(∇ · w)𝑢𝑣 d𝑥𝑡d𝑡

−
∫
𝑀 (0)

(𝑢𝑣) |𝑡=0 d𝑥0

+
∫
R+

∫
𝑀 (𝑡 )

𝛼∇𝑢 · ∇𝑣 + (∇ · w + 𝛽)𝑢𝑣 d𝑥𝑡d𝑡 −
∫
R+

∫
𝜕𝑀 (𝑡 )

𝛼∇𝑢 · 𝑛 𝑣 d𝑠𝑡d𝑡

= −
∫
R+

∫
𝑀 (0)

𝜙−𝑡𝑢
d
d𝑡

(𝜙−𝑡 𝑣) |𝐽𝑡 | d𝑥0d𝑡 +
∫
R+

∫
𝑀 (𝑡 )

𝛼∇𝑢 · ∇𝑣 + 𝛽𝑢𝑣 d𝑥𝑡d𝑡

−
∫
𝑀 (0)

(𝑢𝑣) |𝑡=0 d𝑥0, (16)

which justifies the definition.
Now, in order to have a well defined weak problem, we assume the following.

Assumption 5.2. The problem data (𝛼, 𝛽,w, 𝑓 ) in (1) fulfills the properties
(i) 𝛼, 𝛽 ∈ 𝐿∞

(
R+; 𝐿∞ (𝐵𝑅)

)
, and w ∈ 𝐿∞

(
R+;𝑊1,∞ (𝐵𝑅,R𝑛)

)
;

(ii) 𝛼(𝑡, 𝑥) ≥ 𝑐 > 0 a.e. (𝑡, 𝑥) ∈ R+ × 𝐵𝑅;
(iii) there exists a constant 𝑐 > 0 such that

1/2∇ · w(𝑡, 𝑥) + 𝛽(𝑡, 𝑥) ≥ 𝑐,

for a.e. (𝑡, 𝑥) ∈ R+ × 𝐵𝑅;
(iv) 𝑓 ∈ 𝐿2

𝐻−1 (Ω) (R+) and there exist 𝑓𝑖 ∈ 𝐿2
𝑉∗
𝑖

(R+), 𝑖 = 1, 2 such that

⟨ 𝑓 , 𝑣⟩ =
〈
𝑓1, 𝜙

(
(𝜙−𝑣) |R+×Ω1 (0)

)〉
+
〈
𝑓2, 𝜙

(
(𝜙−𝑣) |R+×Ω2 (0)

)〉
for all 𝑣 ∈ 𝐿2

𝐻1
0 (Ω) (R+).

Note that if Assumptions 2.1 and 5.2 hold then the right-hand side of (15) is an element
in 𝐿∞

(
R+; 𝐿∞ (𝐵𝑟 )

)
, i.e., 𝐽, |𝐽 |, 1/|𝐽 | ∈ 𝑊1,∞ (

R+; 𝐿∞ (𝐵𝑟 )
)
. To avoid a few technicalities

we also assume the following.

Assumption 5.3. The map |𝐽 | is an element in 𝐿∞
(
R+;𝑊1,∞ (𝐵𝑟 )

)
.

This assumption also yields that 1/|𝐽 | ∈ 𝐿∞
(
R+;𝑊1,∞ (𝐵𝑟 )

)
. Next, we introduce

D =
{
𝑢 ∈ 𝐿2

𝐿2 (𝑀 ) (R+) : 𝜙−𝑢 = 𝑣 |R+×𝑀 (0) with 𝑣 ∈ 𝐶∞
0
(
R × 𝐵𝑟

)}
and

D0 =
{
𝑢 ∈ 𝐿2

𝐿2 (𝑀 ) (R+) : 𝜙−𝑢 = 𝑣 |R+×𝑀 (0) with 𝑣 ∈ 𝐶∞
0
(
R × 𝑀 (0)

)}
.

(17)

Lemma 5.4. If Assumption 2.1 holds, thenD andD0 are dense in𝐻1
𝐿2 (𝑀 ) (R+) and 𝐿2

𝑋
(R+),

respectively.
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Proof. By Assumption 2.1, we have that 𝜙 : 𝐻1 (R+; 𝐿2 (𝑀 (0))
)
→ 𝐻1

𝐿2 (𝑀 ) (R+) is an iso-
morphism with an equivalence of norms, and it is therefore sufficient to prove that 𝜙− (D)
is dense in 𝐻1 (R+; 𝐿2 (𝑀 (0))

)
. To this end, observe that 𝐶∞

1 =
{
𝑢 : 𝜙−𝑢 = 𝑣 |R+ with 𝑣 ∈

𝐶∞
0
(
R
)}

is dense in 𝐻1 (R+) and 𝐶∞
2 = 𝐶∞

0
(
𝑀 (0)

)
is dense in 𝐿2 (𝑀 (0)

)
. We then have

that the algebraic tensor space 𝐶∞
1 ⊗ 𝐶∞

2 ⊂ 𝜙− (D) is dense in the completion of 𝐻1 (R+) ⊗
𝐿2 (𝑀 (0)

)
. The latter space is isomorphic with an equivalence of norms to𝐻1 (R+;𝐿2 (𝑀 (0))

)
,

see [11, Section 4] for details. Hence, D is dense in 𝐻1
𝐿2 (𝑀 ) (R+). The density of 𝐷0 in

𝐿2
𝑋
(R+) follows by the same argument.

Lemma 5.5. If Assumptions 2.1 and 5.2 hold then

𝑑 (𝜙−𝑢, 𝜙−𝑢) ≥
∫
R+

∫
𝑀 (𝑡 )

(1/2∇ · w)𝑢2 d𝑥𝑡d𝑡 for all 𝑢 ∈ 𝐻1
𝐿2 (𝑀 ) (R+).

Proof. For an arbitrary 𝑣 ∈ 𝜙− (D) we have

𝑑 (𝑣, 𝑣) = −
∫
R+

∫
𝑀 (0)

𝑣 𝜕𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡

=

∫
R+

∫
𝑀 (0)

𝜕𝑡 (𝑣 |𝐽𝑡 |) 𝑣 d𝑥0 d𝑡 − lim
𝑇→∞

∫
𝑀 (0)

𝜙−𝑇 𝑣
2 |𝐽𝑇 | d𝑥0 +

∫
𝑀 (0)

𝑣2 d𝑥0

=

∫
R+

∫
𝑀 (0)

𝑣 𝜕𝑡 𝑣 |𝐽𝑡 | d𝑥0 d𝑡 +
∫
R+

∫
𝑀 (0)

𝑣2𝜙−𝑡 (∇ · w) |𝐽𝑡 |d𝑥0d𝑡 +
∫
𝑀 (0)

𝑣2 d𝑥0

≥ −𝑑 (𝑣, 𝑣) +
∫
R+

∫
𝑀 (0)

𝜙−𝑡 (∇ · w)𝑣2 |𝐽𝑡 | d𝑥0d𝑡.

Here, the limit term is zero as 𝑣 has a compact support in time. With 𝑢 = 𝜙𝑣 ∈ D the above
inequality is equivalent to

𝑑 (𝜙−𝑢, 𝜙−𝑢) ≥
∫
R+

∫
𝑀 (𝑡 )

(1/2∇ · w)𝑢2 d𝑥𝑡d𝑡.

The bound is also valid for all𝑢 ∈𝐻1
𝐿2 (𝑀 ) (R+), as the bilinear form 𝑑 (𝜙−𝑡

(
·), 𝜙−𝑡 (·)

)
: 𝐻1

𝐿2 (𝑀 ) (R+) ×
𝐻1
𝐿2 (𝑀 ) (R+) → R is continuous and D is dense in 𝐻1

𝐿2 (𝑀 ) (R+) by Lemma 5.4.

Before we proceed, we introduce the trace operators on the space-time cylinder R+ ×
𝑀 (0). By considering tensor operators, compare [11, Section 4], we can extend the spatial
trace operators on 𝑀 (0) (see Section 4) to

𝑇𝜕𝑀 (0) : 𝐿2 (R+;𝐻1 (𝑀 (0))
)
→ 𝐿2 (R+;𝐻1/2 (𝜕𝑀 (0))

)
,

𝑇𝑖,0 : 𝐿2 (R+;𝑉𝑖 (0)
)
→ 𝐿2 (R+;Λ(0)

)
,

(18)

which once more are linear, bounded, and surjective. Furthermore, we have the equality

𝑇𝑖,0𝑣 = (𝑇𝜕Ω𝑖 (0) 𝑣)
��
R+×Γ (0) for all 𝑣 ∈ 𝐿2 (R+;𝑉𝑖 (0)

)
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and, by [11, Lemma 4.2], the identifications

𝐿2 (R+; 𝑋 (0)
)
=
{
𝑣 ∈ 𝐿2 (R+;𝐻1 (𝑀 (0))

)
: 𝑇𝜕𝑀 (0) 𝑣 = 0

}
and

𝐿2 (R+;𝑉𝑖 (0)
)
=
{
𝑣 ∈ 𝐿2 (R+;𝐻1 (Ω𝑖 (0))

)
: (𝑇𝜕Ω𝑖 (0) 𝑣)

��
R+×(𝜕Ω𝑖 (0)\Γ (0) ) = 0

}
.

(19)

Lemma 5.6. If Assumptions 2.1, 5.2, and 5.3 hold and 𝑣 ∈ 𝜙− (𝑈) then |𝐽 |𝑣 and 1/|𝐽 |𝑣 are
also elements in 𝜙− (𝑈).

Proof. If 𝑣 ∈ 𝜙− (𝑈) then, by Assumption 5.3 and the chain rule, one trivially obtains that
|𝐽 |𝑣 is an element in 𝐻1 (R+; 𝐿2 (𝑀 (0))

)
∩ 𝐿2 (R+;𝐻1 (𝑀 (0))

)
and that the map 𝑣 ↦→ |𝐽 |𝑣 is

continuous in 𝐿2 (R+;𝐻1 (𝑀 (0))
)
. It remains to verify that |𝐽 |𝑣 ∈ 𝐿2 (R+; 𝑋 (0)

)
. As D0 ⊂𝑈

is dense in 𝐿2
𝑋
(R+) and |𝐽 | ∈ 𝐶 (R+ × R𝑛,R), we can choose a sequence {𝑣𝑛} ⊂ 𝜙− (D0)

that converges to 𝑣 in 𝐿2 (R+; 𝑋 (0)
)

and obtain that

𝑇𝜕𝑀 (0) ( |𝐽 |𝑣) = lim
𝑛→∞

𝑇𝜕𝑀 (0) ( |𝐽 |𝑣𝑛) = lim
𝑛→∞

( |𝐽 |𝑣𝑛) |R+×𝜕𝑀 (0) = 0.

Hence, |𝐽 |𝑣 is also an element in 𝐿2 (R+; 𝑋 (0)
)
, i.e., |𝐽 |𝑣 ∈ 𝜙− (𝑈). The very same argumen-

tation also holds for 1/|𝐽 |𝑣.

We can now prove the existence of a solution to (13) with homogeneous Dirichlet
boundary conditions. The proof closely follows [7, Lemma 2.3] and is based on Lions’
projection lemma, see [25] or [13, Lemma 2.4] for an English proof.

Theorem 5.7. If Assumptions 2.1, 5.2, and 5.3 hold, then for every 𝑔 ∈ 𝐿2
𝑋∗ (R+) there

exists a solution 𝑢 ∈ 𝐿2
𝑋
(R+) to (13) such that 𝜙−𝑢 ∈ 𝐻1

0 (R+; 𝑋 (0)∗) and(
∥𝑢∥2

𝐿2
𝑋
(R+ )

+ ∥𝜕𝑡 (𝜙−𝑢)∥2
𝐿2 (R+;𝑋 (0)∗ )

)1/2 ≤ 𝐶∥𝑔∥𝐿2
𝑋∗ (R+ ) . (20)

Proof. Consider the bilinear form 𝑎 : 𝐿2
𝑋
(R+) × 𝑈 → R and observe that 𝑢 ↦→ 𝑎(𝑢, 𝑣)

is continuous on 𝐿2
𝑋
(R+) for every fixed 𝑣 ∈ 𝑈. For 𝑢 ∈ 𝑈 we have, by Assumption 5.2

and Lemma 5.5, that

𝑎(𝑢, 𝑢) ≥
∫
R+

∫
𝑀 (𝑡 )

𝛼 |∇𝑢 |2 + (1/2∇ · w + 𝛽)𝑢2 d𝑥𝑡d𝑡 ≥ 𝑐∥𝑢∥2
𝐿2
𝐻1 (𝑀)

(R+ )
.

Furthermore, D0 ⊂ 𝑈 is dense in 𝐿2
𝑋
(R+) via Lemma 5.4. These properties of 𝑎 yield that

the hypothesis of Lions’ projection lemma is fulfilled, i.e., there exists a solution 𝑢 ∈ 𝐿2
𝑋
(R+)

to (13) such that
∥𝑢∥𝐿2

𝑋
(R+ ) ≤ 𝐶∥𝑔∥𝐿2

𝑋∗ (R+ ) . (21)

Here, we have used that 𝐿2
𝑋
(R+)∗ � 𝐿2

𝑋∗ (R+), see Section 3.
It remains to show that we have the higher regularity 𝜙−𝑢 ∈ 𝐻1

0 (R+; 𝑋 (0)∗). To this
end, let 𝜑 ∈ 𝐶∞

0 (R+) and 𝑤 ∈ 𝑋 (0). With 𝑣 = 𝑤𝜑 we have that 𝜙𝑣 and |𝐽− |𝜙𝑣 = 𝜙(1/|𝐽 |𝑣)
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are elements in𝑈, the latter by Lemma 5.6. Furthermore,

−
∫
R+

(∫
𝑀 (0)

𝜙−𝑡𝑢(𝑡) 𝑤 d𝑥0

)
𝜑′ (𝑡) d𝑡

= −
∫
R+

∫
𝑀 (0)

𝜙−𝑡𝑢
(
𝜕𝑡 (1/|𝐽𝑡 |𝑣) − 𝜕𝑡 (1/|𝐽𝑡 |)𝑣

)
|𝐽𝑡 | d𝑥0d𝑡

= 𝑑
(
𝜙−𝑢, 𝜙− ( |𝐽− |𝜙𝑣)

)
+
∫
R+

∫
𝑀 (0)

𝜕𝑡 (1/|𝐽𝑡 |) |𝐽𝑡 | 𝜙−𝑡𝑢 𝑣 d𝑥0d𝑡

= ⟨𝑔, |𝐽− |𝜙𝑣⟩𝐿2
𝑋∗ (R+ )×𝐿2

𝑋
(R+ ) − 𝑐(𝑢, |𝐽− |𝜙𝑣) +

∫
R+

∫
𝑀 (0)

𝜕𝑡 (1/|𝐽𝑡 |) |𝐽𝑡 | 𝜙−𝑡𝑢 𝑣 d𝑥0d𝑡

=

∫
R+

(
⟨𝑔(𝑡), 𝜙𝑡 (1/|𝐽𝑡 |𝑤)⟩𝑋 (𝑡 )∗×𝑋 (𝑡 )

−
∫
𝑀 (𝑡 )

𝛼∇𝑢 · ∇𝜙𝑡 (1/|𝐽𝑡 |𝑤) + 𝛽𝑢𝜙𝑡 (1/|𝐽𝑡 |𝑤) d𝑥𝑡 (22)

+
∫
𝑀 (0)

𝜕𝑡 (1/|𝐽𝑡 |) |𝐽𝑡 | 𝜙−𝑡𝑢 𝑤 d𝑥0

)
𝜑(𝑡)d𝑡

=

∫
R+

⟨𝑝(𝑡), 𝑤⟩𝑋 (0)∗×𝑋 (0) 𝜑(𝑡) d𝑡,

where 𝑝 ∈ 𝐿2 (R+; 𝑋 (0)∗
)

and

∥𝑝∥𝐿2 (R+;𝑋 (0)∗ ) ≤ 𝐶∥1/𝐽∥𝐿∞ (R+;𝑊1,∞ (𝐵𝑟 ) ) ∥𝑔∥𝐿2
𝑋∗ (R+ )

+ 𝐶∥1/𝐽∥𝐿∞ (R+;𝑊1,∞ (𝐵𝑟 ) ) ∥𝑢∥𝐿2
𝑋
(R+ )

+ 𝐶∥1/𝐽∥𝑊1,∞ (R+;𝐿∞ (𝐵𝑟 ) ) ∥𝐽∥𝐿∞ (R+;𝐿∞ (𝐵𝑟 ) ) ∥𝑢∥𝐿2
𝐿2 (𝑀)

(R+ ) (23)

≤ 𝐶∥𝑔∥𝐿2
𝑋∗ (R+ ) .

The last bound follows by (21). Hence, 𝜕𝑡𝜙−𝑢 ∈ 𝐿2 (R+; 𝑋 (0)∗
)
, i.e., 𝜙−𝑢 ∈ 𝐻1 (R+; 𝑋 (0)∗),

and (20) follows by the bounds above. As

𝐿2 (R+; 𝑋 (0))
)
∩ 𝐻1 (R+; 𝑋 (0)∗) ↩→ 𝐶

(
R0
+; 𝐿2 (𝑀 (0))

)
we have that (𝜙−𝑢) |𝑡=0 ∈ 𝐿2 (𝑀 (0)

)
. Combining (13) and (16) yields (𝜙−𝑢) |𝑡=0 = 0, and thus

𝜙−𝑢 ∈ 𝐻1
0 (R+; 𝑋 (0)∗), compare with [7, Equation 2.2] and the proof of [7, Lemma 2.3].

6. Temporal 𝑯1/2-setting for evolving domains

In the rest of the paper we will make use of the Sobolev–Bochner spaces stated in Table 1.
Here,

𝐻𝑠 (𝐼) = {𝑢 ∈ 𝐿2 (𝐼) : ∥𝑢∥𝐻𝑠 (𝐼 ) < ∞} with ∥𝑢∥2
𝐻𝑠 (𝐼 ) = |𝑢 |2

𝐻𝑠 (𝐼 ) + ∥𝑢∥2
𝐿2 (𝐼 )

and |𝑢 |2
𝐻𝑠 (𝐼 ) =

∫
𝐼

∫
𝐼

|𝑢(𝜏) − 𝑢(𝑡) |2

|𝜏 − 𝑡 |1+2𝑠 d𝜏 d𝑡,
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𝑄𝑖 = 𝐻
1
0
(
R+;𝐻−1 (Ω𝑖 (0))

)
∩ 𝐿2 (R+;𝑉𝑖 (0)

)
𝑈𝑖 = 𝐻

1
𝐿2 (Ω𝑖 )

(R+) ∩ 𝐿2
𝑉𝑖
(R+) 𝑈0

𝑖
= 𝐻1

𝐿2 (Ω𝑖 )
(R+) ∩ 𝐿2

𝐻1
0 (Ω𝑖 )

(R+)

𝑊 = 𝐻
1/2
(0, · ) 𝐿2 (Ω) (R+) ∩ 𝐿

2
𝐻1

0 (Ω) (R+) �̃� = 𝐻
1/2
𝐿2 (Ω) (R+) ∩ 𝐿

2
𝐻1

0 (Ω) (R+)

𝑊𝑖 = 𝐻
1/2
(0, · ) 𝐿2 (Ω𝑖 )

(R+) ∩ 𝐿2
𝑉𝑖
(R+) �̃�𝑖 = 𝐻

1/2
𝐿2 (Ω𝑖 )

(R+) ∩ 𝐿2
𝑉𝑖
(R+)

𝑊0
𝑖
= 𝐻

1/2
(0, · ) 𝐿2 (Ω𝑖 )

(R+) ∩ 𝐿2
𝐻1

0 (Ω𝑖 )
(R+) �̃�0

𝑖
= 𝐻

1/2
𝐿2 (Ω𝑖 )

(R+) ∩ 𝐿2
𝐻1

0 (Ω𝑖 )
(R+)

𝑍 = 𝐻
1/4
𝐿2 (Γ) (R+) ∩ 𝐿

2
Λ
(R+)

Table 1. Sobolev–Bochner spaces used in Sections 6 to 8.

for 𝑠 = 1/2 or 𝑠 = 1/4 and on the time intervals 𝐼 = R+ or 𝐼 = R. Furthermore, 𝐻1/2
(0,.) (R+)

is the temporal Lions–Magenes space, i.e.,

𝐻
1/2
(0,.) (R+) = {𝑢 ∈ 𝐿2 (R+) : 𝑒R𝑢 ∈ 𝐻1/2 (R)} with ∥𝑢∥

𝐻
1/2
(0,.) (R+ )

= ∥𝑒R𝑢∥𝐻1/2 (R) ,

where 𝑒R denotes the extension by zero from R+ to R. We will also use the notation

𝑎𝑖 (𝑢, 𝑣) = 𝑑𝑖 (𝜙−𝑢, 𝜙−𝑣) + 𝑐𝑖 (𝑢, 𝑣), where

𝑑𝑖 (𝑢, 𝑣) = −
∫
R+

∫
Ω𝑖 (0)

𝑢 𝜕𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡 and 𝑐𝑖 (𝑢, 𝑣) =
∫
R+

∫
Ω𝑖 (𝑡 )

𝛼∇𝑢 · ∇𝑣 + 𝛽𝑢𝑣 d𝑥𝑡d𝑡.

We denote the corresponding bilinear forms on the whole domain Ω by 𝑎, 𝑑, 𝑐.
As already stated in the introduction, analyzing the equivalence between the weak form of

the original parabolic equation (13) and the transmission problem (2) is difficult in the space
of solutions with temporal regularity of the form 𝜙−𝑢 ∈ 𝐻1

0
(
R+;𝐻−1 (Ω𝑖 (0))

)
, compare with

the weak solution in Theorem 5.7. Instead we observe that the abstract interpolation result [7,
Equation 2.24] together with the identification [𝐻1 (Ω𝑖 (0)), 𝐻−1 (Ω𝑖 (0))]1/2 � 𝐿

2 (Ω𝑖 (0)),
compare with [26, Lemma 12.1], gives[

𝐻1
0
(
R+;𝐻−1 (Ω𝑖 (0))

)
, 𝐿2 (R+;𝐻1 (Ω𝑖 (0))

) ]
1
2
� 𝐻

1/2
(0, · )

(
R+; 𝐿2 (Ω𝑖 (0))

)
.

Hence, 𝑄𝑖 is embedded into 𝐻1/2
(0, · )

(
R+; 𝐿2 (Ω𝑖 (0))

)
, and we obtain

𝑄𝑖 ↩→ 𝜙− (𝑊𝑖). (24)

The embedding 𝐻1
0
(
R+;𝐻−1 (Ω𝑖 (0))

)
∩ 𝐿2 (R+;𝐻1

0 (Ω𝑖 (0))
)
↩→ 𝜙− (𝑊0

𝑖
) also holds true,

see [7, Equation 2.25]. One possibility is therefore to consider the solution space, or trial
space,𝑊𝑖 together with the test space �̃�𝑖 .
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In preparation for the analysis of the transmission problem, we prove the existence of a
unique solution 𝑢 ∈ 𝑊𝑖 to to the parabolic equation on Ω𝑖 with inhomogeneous Dirichlet
boundary conditions. To this end, observe that the trace operators (18) can be restricted as

𝑇𝜕Ω𝑖 (0) : 𝐻1/2
(0, · )

(
R+; 𝐿2 (Ω𝑖 (0))

)
∩ 𝐿2 (R+;𝐻1 (Ω𝑖 (0))

)
→

𝐻1/4 (R+; 𝐿2 (𝜕Ω𝑖 (0))
)
∩ 𝐿2 (R+;𝐻1/2 (𝜕Ω𝑖 (0))

)
and

𝑇𝑖,0 : 𝜙− (𝑊𝑖) → 𝜓− (𝑍),

where the new operators are all linear, bounded, and surjective, see [7, Lemma 2.4] and [11,
Lemma 4.4]. We also recapitulate the existence result for the heat equation on Ω𝑖 (0) with
inhomogeneous boundary conditions, see [7, Corollary 2.11].

Lemma 6.1. If Assumption 2.1 hold then for every 𝜂 ∈ 𝜓− (𝑍) there exists a unique solution
𝑢 ∈ 𝑄𝑖 to the heat equation

ℓ(𝑢, 𝑣) =
∫
R+

∫
Ω𝑖 (0)

−𝑢𝜕𝑡 𝑣 + ∇𝑢 · ∇𝑣 d𝑥0d𝑡 = 0 for all 𝑣 ∈ 𝜙− (𝑈0
𝑖 ), (25)

such that 𝑇𝑖,0𝑢 = 𝜂.

Note that Lemma 6.1 implies that the restricted operator 𝑇𝑖,0
��
𝐿

is bĳective, where

𝐿 = {𝑢 ∈ 𝑄𝑖 : 𝑙 (𝑢, 𝑣) = 0 for all 𝑣 ∈ 𝜙− (𝑈0
𝑖 )}

is a closed subset of 𝜙− (𝑊𝑖). The open mapping theorem then yields that the solution
operator

𝑅𝑖,0 = (𝑇𝑖,0
��
𝐿
)−1 : 𝜓− (𝑍) → 𝑄𝑖 , 𝜂 ↦→ 𝑢

to (25) is a linear and bounded map. Furthermore, 𝑅𝑖,0 is also a right-inverse to𝑇𝑖,0 : 𝜙− (𝑊𝑖) →
𝜓− (𝑍). Next, we introduce the trace operator from the evolving domain Ω𝑖 to the evolving
interface Γ by

𝑇𝑖 = 𝜓 𝑇𝑖,0 𝜙− : 𝑊𝑖 → 𝑍,

which again becomes linear, bounded, and surjective. This trace operator has a bounded
right-inverse given by

𝑅𝑖 = 𝜙 𝑅𝑖,0 𝜓− : 𝑍 → 𝑊𝑖 .

Lemma 6.2. If Assumptions 2.1, 5.2, and 5.3 hold, then for every 𝜂 ∈ 𝑍 and 𝑔 ∈ 𝐿2
𝑉∗
𝑖

(R+)
there exists a solution 𝑢 ∈ 𝑊𝑖 to

𝑎𝑖 (𝑢, 𝑣) = ⟨𝑔, 𝑣⟩ for all 𝑣 ∈ 𝑈0
𝑖 , (26)

such that 𝑇𝑖𝑢 = 𝜂, 𝜙−𝑢 ∈ 𝐻1
0
(
R+;𝐻−1 (Ω𝑖 (0))

)
, and

∥𝑢∥𝑊𝑖
≤ 𝐶 (∥𝑔∥𝐿2

𝐻−1 (Ω𝑖 )
(R+ ) + ∥𝜂∥𝑍 ). (27)
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Proof. Let 𝜂 be an arbitrary, but fixed, element in 𝑍 . First we prove that 𝑎𝑖 (𝑢𝜂 , ·) can
be extended to an element in 𝐿2

𝐻−1 (Ω𝑖 )
(R+), where 𝑢𝜂 = 𝑅𝑖𝜂 ∈ 𝑊𝑖 . To this end, consider

𝑣 ∈ 𝜙− (𝑈0
𝑖
). As |𝐽𝑡 |𝑣 ∈ 𝜙− (𝑈0

𝑖
) by Lemma 5.6 and 𝜙−𝑢𝜂 solves (25), we have

𝑑𝑖 (𝜙−𝑢𝜂 , 𝑣) = −
∫
R+

∫
Ω𝑖 (0)

𝜙−𝑡𝑢𝜂 𝜕𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡

= −
∫
R+

∫
Ω𝑖 (0)

𝜙−𝑡𝑢𝜂
(
𝜕𝑡 ( |𝐽𝑡 |𝑣) − 𝜕𝑡 ( |𝐽𝑡 |)𝑣

)
d𝑥0d𝑡

=

∫
R+

∫
Ω𝑖 (0)

−∇(𝜙−𝑡𝑢𝜂) · ∇(|𝐽𝑡 |𝑣) + 𝜕𝑡 ( |𝐽𝑡 |)𝜙−𝑡𝑢𝜂𝑣
)
d𝑥0d𝑡.

The assumptions on 𝐽 together with the bound ∥𝑢𝜂 ∥𝐿2
𝐻1 (Ω𝑖 )

(R+ ) ≤ ∥𝑅𝑖𝜂∥𝑊𝑖
≤ 𝐶∥𝜂∥𝑍 yield

that
|𝑎𝑖 (𝑢𝜂 , 𝑣) | ≤ |𝑑𝑖 (𝜙−𝑢𝜂 , 𝜙−𝑣) | + |𝑐𝑖 (𝑢𝜂 , 𝑣) |

≤ ∥𝐽∥𝐿∞ (R+;𝑊1,∞ (𝐵𝑟 ) ) ∥𝑢𝜂 ∥𝐿2
𝐻1 (Ω𝑖 )

(R+ ) ∥𝑣∥𝐿2
𝐻1 (Ω𝑖 )

(R+ )

+ ∥𝐽∥𝑊1,∞ (R+;𝐿∞ (𝐵𝑟 ) ) ∥𝑢𝜂 ∥𝐿2
𝐿2 (Ω𝑖 )

(R+ ) ∥𝑣∥𝐿2
𝐿2 (Ω𝑖 )

(R+ )

+ 𝐶∥𝑢𝜂 ∥𝐿2
𝐻1 (Ω𝑖 )

(R+ ) ∥𝑣∥𝐿2
𝐻1 (Ω𝑖 )

(R+ )

≤ 𝐶∥𝜂∥𝑍 ∥𝑣∥𝐿2
𝐻1 (Ω𝑖 )

(R+ )

for every 𝑣 ∈ 𝑈0
𝑖
. As D0 ⊂ 𝑈0

𝑖
is dense in 𝐿2

𝐻1
0 (Ω𝑖 )

(R+), by Lemma 5.4, the above bound

implies that 𝑎𝑖 (𝑢𝜂 , ·) can be extended to a 𝐿2
𝐻−1 (Ω𝑖 )

(R+)-functional.
Secondly, we construct a solution to (26) with the inhomogeneous boundary data 𝜂.

By Theorem 5.7 there exists a solution 𝑢0 ∈ 𝑊0
𝑖

to the equation

𝑎𝑖 (𝑢0, 𝑣) = ⟨𝑔, 𝑣⟩ − 𝑎𝑖 (𝑢𝜂 , 𝑣) for all 𝑣 ∈ 𝑈0
𝑖

such that 𝜙−𝑢0 ∈ 𝐻1
0
(
R+;𝐻−1 (Ω𝑖 (0))

)
and

∥𝑢0∥𝑊𝑖
≤ 𝐶

(
∥𝜙−𝑢0∥2

𝐿2 (R+;𝐻1 (Ω𝑖 (0) ) + ∥𝜕𝑡 (𝜙−𝑢0)∥2
𝐿2 (R+;𝐻−1 (Ω𝑖 (0) ) )

)1/2

≤ 𝐶 (∥𝑔∥𝐿2
𝐻−1 (Ω𝑖 )

(R+ ) + ∥𝑎𝑖 (𝑢𝜂 , ·)∥𝐿2
𝐻−1 (Ω𝑖 )

(R+ ) )

≤ 𝐶 (∥𝑔∥𝐿2
𝐻−1 (Ω𝑖 )

(R+ ) + ∥𝜂∥𝑍 ).

Hence, 𝑢 = 𝑢0 + 𝑢𝜂 ∈ 𝑊𝑖 solves (26) with 𝑇𝑖𝑢 = 0 + 𝜂,

𝜙−𝑢 = 𝜙−𝑢0 + 𝑅𝑖,0 𝜓−𝜂 ∈ 𝐻1
0
(
R+;𝐻−1 (Ω𝑖 (0))

)
, 𝑎𝑛𝑑

∥𝑢∥𝑊𝑖
≤ ∥𝑢0∥𝑊𝑖

+ ∥𝑅𝑖𝜂∥𝑊𝑖
≤ 𝐶 (∥𝑔∥𝐿2

𝐻−1 (Ω𝑖 )
(R+ ) + ∥𝜂∥𝑍 ) + 𝐶∥𝜂∥𝑍 ,

which concludes the proof.
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Introduce the space

D̃0 =
{
𝑢 ∈ 𝐿2

𝐿2 (Ω𝑖 ) (R+) : 𝜙−𝑢 ∈ 𝐶∞
0
(
R+ × 𝐵𝑟

)}
.

Lemma 6.3. If Assumption 2.1 holds, then D̃0 is dense in both𝐻1/2
𝐿2 (Ω𝑖 )

(R+) and𝐻1/2
(0, · ) 𝐿2 (Ω𝑖 )

(R+).

Proof. By [26, Theorem 11.1], one has that𝐶∞
0 (R+) is dense in both 𝐿2 (R+) and 𝐻1/2 (R+).

Then the interpolation
𝐻

1/2
(0, · ) (R+) � [𝐻1

0 (R+), 𝐿
2 (R+)] 1

2
;

see [26, Theorem 11.7, Remark 2.6], implies that 𝐻1
0 (R+) is dense in 𝐻

1/2
(0, · ) (R+). By

definition of 𝐻1
0 (R+) and [26, Proposition 2.3], one obtains that 𝐶∞

0 (R+) is also dense in
𝐻

1/2
(0, · ) (R+). The density of D̃0 in 𝐻1/2

𝐿2 (Ω𝑖 )
(R+) and 𝐻1/2

(0, · ) 𝐿2 (Ω𝑖 )
(R+) then both follow by

the very same tensor argument as in Lemma 5.4.

Lemma 6.4. If Assumptions 2.1, 5.2, and 5.3 hold, then the map 𝑣 ↦→ |𝐽 |𝑣 is continuous on
𝐻

1/2
(0, · )

(
R+; 𝐿2 (Ω𝑖 (0))

)
.

Proof. Under the assumptions it is clear that |𝐽 |𝑣 ∈ 𝐿2 (R+; 𝐿2 (Ω𝑖 (0))
)

for every 𝑣 ∈
𝐻

1/2
(0, · )

(
R+; 𝐿2 (Ω𝑖 (0))

)
, and

∥|𝐽 |𝑣∥2
𝐻

1/2
(0, ·) (R+;𝐿2 (Ω𝑖 (0) ) )

= ∥𝑒R ( |𝐽 |𝑣)∥2
𝐻1/2 (R;𝐿2 (Ω𝑖 (0) ) )

=

∫
R+

∫
R+

∥|𝐽𝜏 |𝑣(𝜏) − |𝐽𝑡 |𝑣(𝑡)∥2
𝐿2 (Ω𝑖 (0) )

(𝜏 − 𝑡)2 d𝜏d𝑡

+ 2
∫
R+

∥|𝐽𝑡 |𝑣(𝑡)∥2
𝐿2 (Ω𝑖 (0) )
𝑡

d𝑡 + ∥|𝐽 |𝑣∥2
𝐿2 (R+;𝐿2 (Ω𝑖 (0) ) ) = 𝐾1 + 𝐾2 + 𝐾3.

The integrals 𝐾2, 𝐾3 are trivially bounded by ∥𝑣∥
𝐻

1/2
(0, ·) (R+;𝐿2 (Ω𝑖 (0) ) ) as |𝐽 | is an element in

𝐿∞
(
R+; 𝐿∞ (Ω𝑖 (0))

)
.

Next, denote the integrand of 𝐾1 by 𝑝(𝜏, 𝑡). Then, as 𝑝(𝜏, 𝑡) = 𝑝(𝑡, 𝜏), one has the
equality

𝐾1 = 2
∫
R+

∫ 𝑡

0
𝑝(𝜏, 𝑡) d𝜏d𝑡 = 2

(∫ ∞

1

∫ 𝑡−1

0
+
∫ ∞

1

∫ 𝑡

𝑡−1
+
∫ 1

0

∫ 𝑡

0

)
𝑝(𝜏, 𝑡) d𝜏d𝑡

= 𝐼1 + 𝐼2 + 𝐼3.

On 𝐼1’s domain of integration one has that (𝜏 − 𝑡)−2 ≤ 1, i.e.,

𝐼1 ≤ 𝐶∥𝐽∥2
𝐿∞ (R+;𝐿∞ (Ω𝑖 (0) ) ) ∥𝑣∥

2
𝐿2 (R+;𝐿2 (Ω𝑖 (0) ) ) .
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The assumption |𝐽 | ∈ 𝑊1,∞ (
R+; 𝐿∞ (Ω𝑖 (0))

)
implies that

∥|𝐽𝜏 |𝑣(𝜏) − |𝐽𝑡 |𝑣(𝑡)∥𝐿2 (Ω𝑖 (0) ) = ∥(|𝐽𝜏 | − |𝐽𝑡 |)𝑣(𝑡) − |𝐽𝜏 | (𝑣(𝜏) − 𝑣(𝑡))∥𝐿2 (Ω𝑖 (0) )

≤ ∥𝐽∥𝑊1,∞ (R+;𝐿∞ (Ω𝑖 (0) ) ) (𝜏 − 𝑡)∥𝑣(𝑡)∥𝐿2 (Ω𝑖 (0) )

+ ∥𝐽∥𝐿∞ (R+;𝐿∞ (Ω𝑖 (0) ) ) ∥𝑣(𝜏) − 𝑣(𝑡)∥𝐿2 (Ω𝑖 (0) ) .

for a.e. 𝜏, 𝑡 ∈ R+. Employing the above bound to the integrand 𝑝 yields

𝐼2 ≤ 𝐶∥𝐽∥2
𝑊1,∞ (R+;𝐿∞ (Ω𝑖 (0) ) )

∫ ∞

1

(∫ 𝑡

𝑡−1
1 d𝜏

)
∥𝑣(𝑡)∥2

𝐿2 (Ω𝑖 (0) ) d𝑡

+ 𝐶∥𝐽∥2
𝐿∞ (R+;𝐿∞ (Ω𝑖 (0) ) )

∫ ∞

1

∫ 𝑡

𝑡−1

∥𝑣(𝜏) − 𝑣(𝑡)∥2
𝐿2 (Ω𝑖 (0) )

(𝜏 − 𝑡)2 d𝜏d𝑡

≤ 𝐶∥𝑣∥2
𝐻1/2 (R+;𝐿2 (Ω𝑖 (0) ) )

.

The final integral 𝐼3 can be bounded in the same fashion as 𝐼2.

Lemma 6.5. If Assumptions 2.1, 5.2, and 5.3 hold, then the bilinear form

𝑑𝑖
(
𝜙− (·), 𝜙− (·)

)
: 𝐻1/2

(0, · ) 𝐿2 (Ω𝑖 )
(R+) × 𝐻1

𝐿2 (Ω𝑖 ) (R+) → R

can be continuously extended to𝐻1/2
(0, · ) 𝐿2 (Ω𝑖 )

(R+) ×𝐻1/2
𝐿2 (Ω𝑖 )

(R+), and the extension satisfies

𝑑𝑖 (𝜙−𝑢, 𝜙−𝑢) ≥
∫
R+

∫
Ω𝑖 (𝑡 )

(1/2∇ · w)𝑢2 d𝑥𝑡d𝑡 (28)

for all 𝑢 ∈ 𝐻1/2
(0, · ) 𝐿2 (Ω𝑖 )

(R+).

Proof. First observe the characterizations (cf. [12, Section 2])

𝐻1/2 (R+; 𝐿2 (Ω𝑖 (0))
)
= {𝑢 ∈ 𝐿2 (R+; 𝐿2 (Ω𝑖 (0))) : 𝑒even𝑢 ∈ 𝐻1/2 (R; 𝐿2 (Ω𝑖 (0))

)
},

𝐻
1/2
(0, · )

(
R+; 𝐿2 (Ω𝑖 (0))

)
= {𝑢 ∈ 𝐿2 (R+; 𝐿2 (Ω𝑖 (0))) : 𝑒R𝑢 ∈ 𝐻1/2 (R; 𝐿2 (Ω𝑖 (0))

)
},

together with the equivalent norms

∥𝑢∥𝐻1/2 (R+;𝐿2 (Ω𝑖 (0) ) ) = ∥𝑒even𝑢∥𝐻1/2 (R;𝐿2 (Ω𝑖 (0) ) ,

∥𝑢∥
𝐻

1/2
(0, ·) (R+;𝐿2 (Ω𝑖 (0) ) ) = ∥𝑒R𝑢∥𝐻1/2 (R;𝐿2 (Ω𝑖 (0) ) ) .

Here, the operators 𝑒even, 𝑒R : 𝐿2 (R+; 𝐿2 (Ω𝑖 (0))
)
→ 𝐿2 (R; 𝐿2 (Ω𝑖 (0))

)
denote the even

extension and the extension by zero, respectively, in the temporal direction.
The bilinear form 𝑑𝑖 (·, ·) : 𝐻1/2

(0, · )
(
R+; 𝐿2 (Ω𝑖 (0))

)
× 𝜙− (D̃0) → R then satisfies the

bound

|𝑑𝑖 (𝑢, 𝑣) | =
����∫
R+

∫
Ω𝑖 (0)

𝑢𝜕𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡
���� = ����∫

R

∫
Ω𝑖 (0)

𝑒R ( |𝐽𝑡 |𝑢)𝜕𝑡 (𝑒even𝑣) d𝑥0d𝑡
����

≤ 𝐶∥𝑒R ( |𝐽𝑡 |𝑢)∥𝐻1/2 (R,𝐿2 (Ω𝑖 (0) ) ) ∥𝑒even𝑣∥𝐻1/2 (R,𝐿2 (Ω𝑖 (0) ) )

≤ 𝐶∥𝑢∥
𝐻

1/2
(0, ·) (R+;𝐿2 (Ω𝑖 (0) ) ) ∥𝑣∥𝐻1/2 (R+;𝐿2 (Ω𝑖 (0) ) ) ,

(29)
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where the first inequality follows as in [11, Section 5] and the second one holds due
to Lemma 6.4.

By Lemma 6.3, the set 𝜙− (D̃0) is dense in 𝐻1/2 (R+; 𝐿2 (Ω𝑖 (0))
)
. Hence, (29) yields

that 𝑑𝑖 can be continuously extended to 𝐻1/2
(0, · )

(
R+; 𝐿2 (Ω𝑖 (0))

)
× 𝐻1/2 (R+; 𝐿2 (Ω𝑖 (0))

)
, and

𝑑𝑖
(
𝜙− (·), 𝜙− (·)

)
: 𝐻1/2

(0, · ) 𝐿2 (Ω𝑖 )
(R+) × 𝐻1/2

𝐿2 (Ω𝑖 )
(R+) → R

is then also a well defined, bounded bilinear form.
Finally, applying Lemma 5.5 to an element 𝑢 ∈ D̃0 ⊂ 𝐻1

𝐿2 (Ω𝑖 )
(R+) and observing that D̃0

is dense in 𝐻1/2
(0, · ) 𝐿2 (Ω𝑖 )

(R+), see Lemma 6.3, yields the lower bound (28).

Lemma 6.6. If Assumption 2.1 holds, then𝑈𝑖 and𝑈0
𝑖

are dense in �̃�𝑖 and �̃�0
𝑖
, respectively.

Proof. We first consider the density of 𝑈𝑖 . Introduce the mollifier 𝜑 ∈ 𝐶∞
0 (R) with the

property
∫
R
𝜑(𝑡)d𝑡 = 1 and let 𝜑𝜀 (𝑡) = 𝜀−1𝜑(𝜀−1𝑡) for 𝜀 > 0. For every

𝑣 ∈ 𝐻1/2 (R; 𝐿2 (Ω𝑖 (0))
)
∩ 𝐿2 (R;𝑉𝑖 (0)

)
the convolution 𝑣𝜀 = 𝜑𝜀 ∗ 𝑣 is an element in 𝐿2 (R;𝑉𝑖 (0)

)
and {𝑣𝜀} converges to 𝑣 in the

same space as 𝜀 tends to 0+, see, e.g., [20, Lemma 1.2.30 and Proposition 1.2.32].
Recall the vector-valued Fourier transform F on 𝐿2 (R; 𝐿2 (Ω𝑖 (0))

)
C, see [20, Sec-

tions 2.4]. The Fourier characterizations of convolutions and derivatives then imply that
F (𝑣𝜀) = F (𝜑𝜀)F (𝑣) and 𝜕𝑡 𝑣𝜀 = (𝜕𝑡𝜑𝜀) ∗ 𝑣. The latter implies that

𝑣𝜀 ∈ 𝐻1 (R; 𝐿2 (Ω𝑖 (0))
)
∩ 𝐿2 (R;𝑉𝑖 (0)

)
for all 𝜖 > 0. Furthermore, the Fourier characterization of 𝐻1/2 (R), see [33, Lemma 16.3],
yields that

𝑣 ↦→
(
∥
√︁

i(·)F 𝑣∥2
𝐿2 (R;𝐿2 (Ω𝑖 (0) ) )C + ∥𝑣∥2

𝐿2 (R;𝐿2 (Ω𝑖 (0) ) )
)1/2

is an equivalent norm on 𝐻1/2 (R; 𝐿2 (Ω𝑖 (0))
)
. Due to the temporal 𝐻1/2-regularity of 𝑣,

one has that 𝑤 = F −1
√︁

i(·)F 𝑣 ∈ 𝐿2 (R; 𝐿2 (Ω𝑖 (0))
)

and

∥𝑣 − 𝑣𝜀 ∥2
𝐻1/2 (R;𝐿2 (Ω𝑖 (0) ) )

≤ 𝐶∥(1 − F 𝜑𝜀)
√︁

i(·)F 𝑣∥2
𝐿2 (R;𝐿2 (Ω𝑖 (0) ) )C

+ ∥𝑣 − 𝑣𝜀 ∥2
𝐿2 (R;𝐿2 (Ω𝑖 (0) ) )

≤ 𝐶∥𝑤 − 𝜑𝜀 ∗ 𝑤∥2
𝐿2 (R;𝐿2 (Ω𝑖 (0) ) ) + ∥𝑣 − 𝑣𝜀 ∥2

𝐿2 (R;𝐿2 (Ω𝑖 (0) ) ) .

The above bound together with [20, Proposition 1.2.32] implies that 𝑣𝜀 also converges to 𝑣
in 𝐻1/2 (R; 𝐿2 (Ω𝑖 (0))

)
.

Next, let 𝑢 ∈ 𝜙− (�̃�𝑖) and observe that the even extension in time

𝑒even : 𝜙− (�̃�𝑖) → 𝐻1/2 (R; 𝐿2 (Ω𝑖 (0))
)
∩ 𝐿2 (R;𝑉𝑖 (0)

)
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is a well defined map. Furthermore, the restriction 𝑟R+𝑣 = 𝑣 |R+×Ω𝑖 (0) is a bounded left-inverse
to 𝑒even. Set 𝑢𝜀 = 𝑟R+ (𝜑𝜀 ∗ 𝑒even𝑢) ∈ 𝜙− (𝑈𝑖). The previous argumentation on R then gives
us the limit

∥𝑢 − 𝑢𝜀 ∥𝜙− (�̃�𝑖 ) = ∥𝑟R+ (𝑒even𝑢 − 𝜑𝜀 ∗ 𝑒even𝑢)∥𝜙− (�̃�𝑖 )

≤ 𝐶∥𝑒even𝑢 − 𝜑𝜀 ∗ 𝑒even𝑢∥𝐻1/2 (R;𝐿2 (Ω𝑖 (0) ) )∩𝐿2 (R;𝑉𝑖 (0) ) → 0

as 𝜀 tends to 0+. Hence, 𝜙− (𝑈𝑖) is dense in 𝜙− (�̃�𝑖). The proof for𝑈𝑖 is then completed by
recalling that 𝜙 : 𝐻1/2 (R; 𝐿2 (Ω𝑖 (0))

)
∩ 𝐿2 (R;𝑉𝑖 (0)

)
→ �̃�𝑖 is isomorphic with an equiva-

lence of norms.
The same argument holds for𝑈0

𝑖
simply by replacing 𝑉𝑖 with 𝐻1

0 (Ω𝑖).

Corollary 6.7. If Assumptions 2.1, 5.2, and 5.3 hold, then the bilinear form
𝑎𝑖 : 𝑊𝑖 ×𝑈𝑖 → R can be continuously extended to𝑊𝑖 × �̃�𝑖 , and the extension satisfies

𝑎𝑖 (𝑢, 𝑢) ≥ 𝑐∥𝑢∥2
𝐿2
𝐻1 (Ω𝑖 )

(R+ )
for all 𝑢 ∈ 𝑊𝑖 . (30)

Proof. By Lemma 6.5 one has the bound

|𝑎𝑖 (𝑢, 𝑣) | ≤ |𝑑𝑖
(
𝜙−𝑢, 𝜙−𝑣

)
| + |𝑐𝑖 (𝑢, 𝑣) |

≤ 𝐶
(
∥𝑢∥

𝐻
1/2
(0, ·) 𝐿2 (Ω𝑖 )

(R+ ) ∥𝑢∥𝐻1/2
𝐿2 (Ω𝑖 )

(R+ ) + ∥𝑢∥𝐿2
𝐻1 (Ω𝑖 )

(R+ ) ∥𝑣∥𝐿2
𝐻1 (Ω𝑖 )

(R+ )
)

≤ 𝐶∥𝑢∥𝑊𝑖
∥𝑣∥�̃�𝑖

for all 𝑢 ∈ 𝑊𝑖 and 𝑣 ∈ 𝑈𝑖 . As𝑈𝑖 is dense in �̃�𝑖 , via Lemma 6.6, the above bound implies
that 𝑎𝑖 can be continuously extended to𝑊𝑖 × �̃�𝑖 . The lower bound (30) follows directly by
combining (28) with Assumption 5.2.

This temporal 𝐻1/2-framework now gives a unique solution to the weak parabolic
equation on Ω𝑖 with inhomogeneous boundary conditions.

Corollary 6.8. If Assumptions 2.1, 5.2, and 5.3 hold, then for every 𝜂 ∈ 𝑍 and 𝑔 ∈ 𝐿2
𝑉∗
𝑖

(R+)
there exists a unique solution 𝑢 ∈ 𝑊𝑖 to the equation

𝑎𝑖 (𝑢, 𝑣) = ⟨𝑔, 𝑣⟩ for all 𝑣 ∈ �̃�0
𝑖 (31)

such that 𝑇𝑖𝑢 = 𝜂, 𝜙−𝑢 ∈ 𝐻1
0
(
R+;𝐻−1 (Ω𝑖 (0))

)
, and 𝑢 satisfies the bound (27).

Proof. According to Lemma 6.2, there exists a solution 𝑢 ∈ 𝑊𝑖 to (26), with the desired
properties. The density of 𝑈0

𝑖
in �̃�0

𝑖
together with the extension of 𝑎𝑖 , see Lemma 6.6

and Corollary 6.7, then implies that 𝑢 is also a solution to (31). The uniqueness of the
solution follows directly by (30).

The same 𝐻1/2-extension that has lead up to Corollaries 6.7 and 6.8 trivially gives that
the weak problem on Ω with homogeneous boundary conditions, i.e.,

𝑎(𝑢, 𝑣) = ⟨ 𝑓 , 𝑣⟩ for all 𝑣 ∈ �̃�, (32)
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has a unique solution 𝑢 ∈ 𝑊 with 𝜙−𝑢 ∈ 𝐻1
0
(
R+;𝐻−1 (Ω(0))

)
.

Letting 𝑔 = 0 in Corollary 6.8 yields the bounded linear solution operators

𝐹𝑖 : 𝑍 → 𝑊𝑖 , 𝜂 ↦→ 𝑢 (33)

such that 𝑇𝑖𝐹𝑖𝜂 = 𝜂, 𝜙−𝐹𝑖𝜂 ∈ 𝑄𝑖 and 𝑢 = 𝐹𝑖𝜂 solves (31) with 𝑔 = 0.
Moreover, setting 𝜂 = 0 yields the bounded linear solution operators

𝐺𝑖 : 𝐿2
𝐻−1 (Ω𝑖 ) (R+) → 𝑊0

𝑖 , 𝑔 ↦→ 𝑢

such that 𝑢 = 𝐺𝑖𝑔 solves (31). Here we use the fact that every 𝑔 ∈ 𝐿2
𝐻−1 (Ω𝑖 )

(R+) can be
interpreted as an element in 𝐿2

𝑉∗
𝑖

(R+) by restricting 𝑔 to 𝐿2
𝑉𝑖
(R+). (This restriction is not an

injective map.)

7. Transmission problems on evolving domains

In this section we analyze the transmission problem on the evolving domain decomposi-
tion (2). The weak formulation of (2) is to find (𝑢1, 𝑢2) ∈ 𝑊1 ×𝑊2 such that

𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) = ⟨ 𝑓𝑖 , 𝑣𝑖⟩ for all 𝑣𝑖 ∈ �̃�0
𝑖 , 𝑖 = 1, 2,

𝑇1𝑢1 = 𝑇2𝑢2,∑2
𝑖=1 𝑎𝑖 (𝑢𝑖 , 𝐹𝑖𝜇) − ⟨ 𝑓𝑖 , 𝐹𝑖𝜇⟩ = 0 for all 𝜇 ∈ 𝑍.

(34)

We introduce the spatial restriction operators

𝑞𝑖,0 : 𝑢 ↦→ 𝑢 |R+×Ω𝑖 (0) and 𝑞𝑖 = 𝜙𝑞𝑖,0𝜙− ,

where the maps 𝑞𝑖 : 𝑊 → 𝑊𝑖 and 𝑞𝑖 : �̃� → �̃�𝑖 both become well defined and continuous.
With the derived setting we are now able to “cut” and “glue together” functions without
losing spatial or temporal regularity.

Lemma 7.1. Suppose that Assumption 2.1 holds. If 𝑢 ∈ 𝑊 , then

(𝑢1, 𝑢2) = (𝑞1𝑢, 𝑞2𝑢) ∈ 𝑊1 ×𝑊2

and 𝑇1𝑢1 = 𝑇2𝑢2. Conversely, if (𝑢1, 𝑢2) ∈ 𝑊1 ×𝑊2 and 𝑇1𝑢1 = 𝑇2𝑢2, then 𝑢 = 𝜙𝑣 with

𝑣 = {𝜙−𝑢1 on R+ ×Ω1 (0), 𝜙−𝑢2 on R+ ×Ω2 (0)}

satisfies 𝑢 ∈ 𝑊 . Moreover, the same holds for 𝑢 ∈ �̃� and (𝑢1, 𝑢2) ∈ �̃�1 × �̃�2.

Proof. First, suppose that 𝑢 ∈ 𝑊 . Then, as 𝜙− is an isomorphism on intersection spaces,
we have

𝜙−𝑢 ∈ 𝐻1/2
(0, · )

(
R+; 𝐿2 (Ω(0))

)
∩ 𝐿2 (R+;𝐻1

0 (Ω(0))
)
.
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It follows from [12, Lemma 5] that

𝑞𝑖,0 (𝜙−𝑢) ∈ 𝐻1/2
(0, · ) (R+; 𝐿2 (Ω𝑖 (0))) ∩ 𝐿2 (R+;𝑉𝑖 (0)

)
and 𝑇1,0 (𝜙−𝑢) |R+×Ω1 (0) = 𝑇2,0 (𝜙−𝑢) |R+×Ω2 (0) . Applying the isomorphism 𝜙 yields that
𝑢𝑖 = 𝑞𝑖𝑢 ∈ 𝑊𝑖 and the definition of 𝑇𝑖 gives 𝑇1𝑢1 = 𝑇2𝑢2.

Conversely, suppose that 𝑢𝑖 ∈ 𝑊𝑖 and 𝑇1𝑢1 = 𝑇2𝑢2. Then we have

𝜙−𝑢𝑖 ∈ 𝐻1/2
(0, · ) (R+; 𝐿2 (Ω𝑖 (0))) ∩ 𝐿2 (R+;𝑉𝑖 (0)

)
and by the definition of 𝑇𝑖 we have 𝑇1,0𝜙−𝑢1 = 𝑇2,0𝜙−𝑢2. Therefore, it follows from [12,
Lemma 5] that

𝑣 = {𝜙−𝑢1 on R+ ×Ω1 (0), 𝜙−𝑢2 on R+ ×Ω2 (0)}

∈ 𝐻1/2
(0, · ) (R+; 𝐿2 (Ω(0))) ∩ 𝐿2 (R+;𝐻1

0 (Ω(0))
)
.

Thus, we have 𝑢 = 𝜙𝑣 ∈ 𝑊 . The argument for �̃� and �̃�𝑖 is the same since it also holds on
the reference cylinder R+ ×Ω(0) according to [12, Lemma 5].

Lemma 7.2. If Assumptions 2.1, 5.2, and 5.3 hold, then

𝑎(𝑢, 𝑣) =
2∑︁
𝑖=1

𝑎𝑖 (𝑞𝑖𝑢, 𝑞𝑖𝑣)

for all 𝑢 ∈ 𝑊 and 𝑣 ∈ �̃� .

Proof. First, let 𝑢 ∈ 𝐻1/2
(0, · )

(
R+; 𝐿2 (Ω)

)
and consider the restriction operator

𝑞𝑖,0 : 𝐻1/2 (R+; 𝐿2 (Ω(0))
)
→ 𝐻1/2 (R+; 𝐿2 (Ω𝑖 (0))),

which is continuous. The same holds if 𝐻1/2 is replaced by 𝐻1/2
(0, · ) . For 𝑣 ∈ 𝜙− (D̃0) we have

𝑞𝑖,0 (𝜕𝑡 𝑣) = 𝜕𝑡 (𝑞𝑖,0𝑣) and

𝑑 (𝑢, 𝑣) = −
∫
R+

∫
Ω(0)

𝑢𝜕𝑡 𝑣 |𝐽𝑡 | d𝑥0d𝑡 =
2∑︁
𝑖=1

−
∫
R+

∫
Ω𝑖 (0)

𝑢𝜕𝑡 (𝑞𝑖,0𝑣) |𝐽𝑡 | d𝑥0d𝑡

=

2∑︁
𝑖=1

𝑑𝑖
(
𝑞𝑖,0𝑢, 𝑞𝑖,0𝑣

)
.

By Lemma 6.3, we have for every 𝑣 ∈ 𝐻1/2
𝐿2 (Ω) (R+) that there exists a sequence {𝑣𝑛} ⊂ D̃0

that converges to 𝑣. Then the continuity of 𝑑, 𝑑𝑖 , 𝜙− , and 𝑞𝑖,0 gives

𝑑 (𝜙−𝑢, 𝜙−𝑣) = lim
𝑛→∞

𝑑 (𝜙−𝑢, 𝜙−𝑣𝑛) = lim
𝑛→∞

2∑︁
𝑖=1

𝑑𝑖
(
𝑞𝑖,0 (𝜙−𝑢), 𝑞𝑖,0 (𝜙−𝑣𝑛)

)
=

2∑︁
𝑖=1

𝑑𝑖
(
𝑞𝑖,0 (𝜙−𝑢), 𝑞𝑖,0 (𝜙−𝑣)

)
.
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Second, let 𝑢 ∈ 𝐿2
𝐻1

0 (Ω) (R+). As 𝑢(𝑡) ∈ 𝐻1
0
(
Ω(𝑡)

)
for a.e. 𝑡 ∈ R+, one obtains(

∇𝑢(𝑡)
) ��
Ω𝑖 (𝑡 ) = ∇

(
𝑢(𝑡) |Ω𝑖 (𝑡 )

)
and

𝑢(𝑡) |Ω𝑖 (𝑡 ) = 𝑢(𝑡) ◦
(
Φ𝑡 |Ω𝑖 (0) ◦ Φ−𝑡 |Ω𝑖 (𝑡 )

)
=

(
𝜙−𝑡𝑢(𝑡)

) ��
Ω𝑖 (0) ◦ Φ−𝑡 |Ω𝑖 (𝑡 ) = (𝑞𝑖𝑢) (𝑡)

for a.e. 𝑡 ∈ R+. Hence, for every 𝑢, 𝑣 ∈ 𝐿2
𝐻1

0 (Ω) (R+) we have

𝑐(𝑢, 𝑣) =
∫
R+

∫
Ω(𝑡 )

𝛼∇𝑢 · ∇𝑣 + 𝛽𝑢𝑣 d𝑥𝑡d𝑡 =
2∑︁
𝑖=1

∫
R+

∫
Ω𝑖 (𝑡 )

(
𝛼∇𝑢 · ∇𝑣 + 𝛽𝑢𝑣

) ��
Ω𝑖 (𝑡 ) d𝑥𝑡d𝑡

=

2∑︁
𝑖=1

∫
R+

∫
Ω𝑖 (𝑡 )

𝛼∇(𝑞𝑖𝑢) · ∇(𝑞𝑖𝑣) + 𝛽(𝑞𝑖𝑢) (𝑞𝑖𝑣) d𝑥𝑡d𝑡 =
2∑︁
𝑖=1

𝑐𝑖
(
𝑞𝑖𝑢, 𝑞𝑖𝑣

)
.

Combining these results for 𝑢 ∈ 𝑊 and 𝑣 ∈ �̃� gives the sought-after equality.

Theorem 7.3. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. The transmission problem
is equivalent to the weak problem in the following way: If 𝑢 solves (32), then (𝑢1, 𝑢2) =
(𝑞1𝑢, 𝑞2𝑢) solves (34). Conversely, if (𝑢1, 𝑢2) solves (34), then𝑢 = 𝜙𝑣with 𝑣 = {𝜙−𝑢1 on R+ ×
Ω1, 𝜙−𝑢2 on R+ ×Ω2} solves (32).

Proof. Suppose that 𝑢 ∈ 𝑊 solves (32). Then

(𝑢1, 𝑢2) = (𝑞1𝑢, 𝑞2𝑢) ∈ 𝑊1 ×𝑊2

and 𝑇1𝑢1 = 𝑇2𝑢2 by Lemma 7.1. Moreover, let 𝑣𝑖 = 𝜙𝑤𝑖 ∈ �̃�0
𝑖

with 𝑤𝑖 = {𝜙−𝑣𝑖 on R+ ×
Ω𝑖 , 0 on R+ ×Ω3−𝑖} for 𝑖 = 1, 2. It follows by Lemma 7.1 and (19) that 𝑤𝑖 ∈ �̃� . Therefore,
by Assumption 5.2 and Lemma 7.2 we have

𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) = 𝑎𝑖 (𝑞𝑖𝑢, 𝑞𝑖𝑤𝑖) = 𝑎𝑖 (𝑞𝑖𝑢, 𝑞𝑖𝑤𝑖) + 𝑎3−𝑖 (𝑞3−𝑖𝑢, 𝑞3−𝑖𝑤𝑖)
= 𝑎(𝑢, 𝑤𝑖) = ⟨ 𝑓 , 𝑤𝑖⟩
= ⟨ 𝑓𝑖 , 𝑞𝑖𝑤𝑖⟩ + ⟨ 𝑓3−𝑖 , 𝑞3−𝑖𝑤𝑖⟩ = ⟨ 𝑓𝑖 , 𝑣𝑖⟩.

Now let 𝜇 ∈ 𝑍 and define 𝑣 = 𝜙𝑤 by 𝑤 = {𝜙−𝐹1𝜇 on R+ ×Ω1 (0), 𝜙−𝐹2𝜇 on R+ ×Ω2 (0)}.
Since 𝑇1𝐹1𝜇 = 𝑇2𝐹2𝜇 we have that 𝑣 ∈ 𝑊 according to Lemma 7.1. Thus Assumption 5.2
and Lemma 7.2 again yield

2∑︁
𝑖=1

𝑎𝑖 (𝑢𝑖 , 𝐹𝑖𝜇) = 𝑎(𝑢, 𝑣) = ⟨ 𝑓 , 𝑣⟩ =
2∑︁
𝑖=1

⟨ 𝑓𝑖 , 𝐹𝑖𝜇⟩

and we have now shown that 𝑢 satisfies all three equations of (34).
Conversely, suppose that (𝑢1, 𝑢2) solves (34) and define 𝑢 = 𝜙𝑣 with 𝑣 = {𝜙−𝑢1 on R+ ×

Ω1 (0), 𝜙−𝑢2 on R+ ×Ω2 (0)}. Since𝑇1𝑢1 =𝑇2𝑢2 we have that 𝑢 ∈𝑊 according to Lemma 7.1.
Now let 𝑣 ∈ �̃� and define (𝑣1, 𝑣2) = (𝑞1𝑣, 𝑞2𝑣), which satisfies 𝑣𝑖 ∈ �̃�𝑖 and 𝑇1𝑣1 = 𝑇2𝑣2 again
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by Lemma 7.1. If we define 𝜇 =𝑇𝑖𝑣𝑖 then 𝑣𝑖 − 𝐹𝑖𝜇 ∈ �̃�0
𝑖

by (19). Therefore, by Assumption 5.2
and Lemma 7.2, we have

𝑎(𝑢, 𝑣) =
2∑︁
𝑖=1

𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) =
2∑︁
𝑖=1

𝑎𝑖 (𝑢𝑖 , 𝑣𝑖 − 𝐹𝑖𝜇) + 𝑎𝑖 (𝑢𝑖 , 𝐹𝑖𝜇)

=

2∑︁
𝑖=1

⟨ 𝑓𝑖 , 𝑣𝑖 − 𝐹𝑖𝜇⟩ + ⟨ 𝑓𝑖 , 𝐹𝑖𝜇⟩ =
2∑︁
𝑖=1

⟨ 𝑓𝑖 , 𝑣𝑖⟩ = ⟨ 𝑓 , 𝑣⟩,

which means that 𝑢 solves (32).

8. Steklov–Poincaré operators and convergence of the Robin–Robin
scheme on evolving domains

The Steklov–Poincaré operators 𝑆𝑖 , 𝑆 : 𝑍 → 𝑍∗ are defined as

⟨𝑆𝑖𝜂, 𝜇⟩ = 𝑎𝑖 (𝐹𝑖𝜂, 𝐹𝑖𝜇)

and 𝑆 = 𝑆1 + 𝑆2. Moreover, we define the functionals 𝜒𝑖 , 𝜒 ∈ 𝑍∗ as

⟨𝜒𝑖 , 𝜇⟩ = ⟨ 𝑓𝑖 , 𝐹𝑖𝜇⟩ − 𝑎𝑖 (𝐺𝑖 𝑓𝑖 , 𝐹𝑖𝜇),

and 𝜒 = 𝜒1 + 𝜒2.

Remark 8.1. Although the bilinear forms 𝑎𝑖 have different trial and test spaces, the Steklov–
Poincaré operators have the same trial and test spaces, i.e., 𝑆𝑖 : 𝑍 → 𝑍∗. This is due to the
fact that the spaces𝑊𝑖 and �̃�𝑖 share the trace space 𝑍 , see [7, p. 507].

We will now prove the main properties of the Steklov–Poincaré operators, namely that
they are bounded and coercive. We first have the following lemma, which is important for
the coercivity of the Steklov–Poincaré operators.

Lemma 8.2. If Assumptions 2.1, 5.2, and 5.3 hold then

∥𝐹𝑖𝜂∥𝑊𝑖
≤ 𝐶∥𝐹𝑖𝜂∥𝐿2

𝐻1 (Ω𝑖 )
(R+ )

for every 𝜂 ∈ 𝑍 .

Proof. By the definition of 𝐹𝑖 in (33) one has 𝜙−𝐹𝑖𝜂 ∈ 𝑄𝑖 , and the embedding (24) then
yields the bound

∥𝐹𝑖𝜂∥𝑊𝑖
≤ 𝐶

(
∥𝜙−𝐹𝑖𝜂∥2

𝐿2 (R+;𝐻1 (Ω𝑖 (0) ) ) + ∥𝜕𝑡𝜙−𝐹𝑖𝜂∥2
𝐿2 (R+;𝐻−1 (Ω𝑖 (0) ) )

)1/2
.

Furthermore, as 𝑢 = 𝐹𝑖𝜂 is a solution to (31), the same calculations as in (22) together with
the bound (23) for 𝑔 = 0 gives

∥𝜕𝑡𝜙−𝐹𝑖𝜂∥𝐿2 (R+;𝐻−1 (Ω𝑖 (0) ) ) ≤ 𝐶∥𝐹𝑖𝜂∥𝐿2
𝐻1 (Ω𝑖 )

(R+ ) .

Combining these results gives the desired estimate.
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Theorem 8.3. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. Then the Steklov–Poincaré
operators 𝑆𝑖 are bounded and also coercive, i.e.,

⟨𝑆𝑖𝜂, 𝜂⟩ ≥ 𝑐∥𝜂∥2
𝑍 for all 𝜂 ∈ 𝑍. (35)

Moreover, a similar result holds for 𝑆.

Proof. By Corollary 6.7 and the fact that 𝐹𝑖 : 𝑍 → 𝑊𝑖 is bounded we have��⟨𝑆𝑖𝜂, 𝜇⟩�� = ��𝑎𝑖 (𝐹𝑖𝜂, 𝐹𝑖𝜇)�� ≤ 𝐶∥𝐹𝑖𝜂∥𝑊𝑖
∥𝐹𝑖𝜇∥�̃�𝑖

≤ 𝐶∥𝐹𝑖𝜂∥𝑊𝑖
∥𝐹𝑖𝜇∥𝑊𝑖

≤ 𝐶∥𝜂∥𝑍 ∥𝜇∥𝑍

for all 𝜂, 𝜇 ∈ 𝑍 , which shows that 𝑆𝑖 is bounded. It follows from (30) and Lemma 8.2 that

⟨𝑆𝑖𝜂, 𝜂⟩ = 𝑎𝑖 (𝐹𝑖𝜂, 𝐹𝑖𝜂) ≥ 𝑐∥𝐹𝑖𝜂∥2
𝐿2
𝐻1 (Ω𝑖 )

(R+ )
≥ 𝑐∥𝐹𝑖𝜂∥2

𝑊𝑖
≥ 𝑐∥𝑇𝑖𝐹𝑖𝜂∥2

𝑍 = 𝑐∥𝜂∥2
𝑍

for all 𝜂 ∈ 𝑍 . Thus 𝑆𝑖 is coercive. The result for 𝑆 follows by summing the inequalities
for 𝑆𝑖 .

The properties of 𝑆𝑖 and 𝑆 immediately yield that the operators satisfy the assumptions
of the Lax–Milgram theorem and therefore we have the following corollary.

Corollary 8.4. The Steklov–Poincaré operators 𝑆𝑖 , 𝑆 : 𝑍 → 𝑍∗ are isomorphisms.

The Steklov–Poincaré equation is to find 𝜂 ∈ 𝑍 such that

𝑆𝜂 = 𝜒. (36)

The following result is an immediate consequence of the definitions of the Steklov–Poincaré
operators.

Lemma 8.5. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. The Steklov–Poincaré
equation is equivalent to the transmission problem in the following way: If (𝑢1, 𝑢2) solves (34)
then 𝜂 = 𝑇𝑖𝑢𝑖 solves (36). Conversely, if 𝜂 solves (36), then (𝐹1𝜂 + 𝐺1 𝑓1, 𝐹2𝜂 + 𝐺2 𝑓2)
solves (34).

Any non-overlapping domain decomposition method can be formulated as an interface
iteration to solve (36), see, e.g., [11,12,31]. We first consider the Robin–Robin method. For
a parameter 𝑠0 > 0 and an initial guess 𝜂0

2 ∈ 𝑍 , the interface iteration of the Robin–Robin
method is given by finding (𝜂𝑛1 , 𝜂

𝑛
2 ) ∈ 𝑍 × 𝑍 for 𝑛 = 1, 2, . . . such that{

(𝑠0R + 𝑆1)𝜂𝑛1 = (𝑠0R − 𝑆2)𝜂𝑛−1
2 + 𝜒

(𝑠0R + 𝑆2)𝜂𝑛2 = (𝑠0R − 𝑆1)𝜂𝑛1 + 𝜒.
(37)

Here, R denotes the Riesz isomorphism defined as

R : 𝐿2
𝐿2 (Γ) (R+) → 𝐿2

𝐿2 (Γ) (R+)
∗, 𝜇 ↦→ (𝜇, ·)𝐿2

𝐿2 (Γ)
(R+ ) .

The following result follows as in the case of elliptic problems [10, Lemma 6.3]. To be
precise, we are referring to the weak formulation of (3), which is of the same form as in the
case of elliptic problems [10, (5.2)].
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Lemma 8.6. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. The Robin–Robin method
and the Peaceman–Rachford iteration are equivalent in the following way: If (𝑢𝑛1 , 𝑢

𝑛
2 )𝑛≥1

solves (3) then (𝜂𝑛1 , 𝜂
𝑛
2 )𝑛≥1, defined as 𝜂𝑛

𝑖
= 𝑇𝑖𝑢

𝑛
𝑖
, solves (37) with 𝜂0

2 = 𝑇2𝑢
0
2. Conversely,

if (𝜂𝑛1 , 𝜂
𝑛
2 )𝑛≥1 solves (37) then (𝑢𝑛1 , 𝑢

𝑛
2 )𝑛≥1, defined as 𝑢𝑛

𝑖
= 𝐹𝑖𝜂

𝑛
𝑖
+ 𝐺𝑖 𝑓𝑖 , solves (3) with

𝑢0
2 = 𝐹2𝜂

0
2 + 𝐺2 𝑓2.

The second method we discuss is the Dirichlet–Neumann method. For a method
parameter 𝑠1 > 0 and an initial guess 𝜂0 ∈ 𝑍 , the interface iteration corresponding to
the Dirichlet–Neumann method is given by finding 𝜂𝑛 ∈ 𝑍 for 𝑛 = 1, 2, . . . such that

𝜂𝑛 = 𝜂𝑛−1 + 𝑠1𝑆
−1
2 (𝜒 − 𝑆𝜂𝑛−1). (38)

Finally we consider the Neumann–Neumann method. For two method parameters 𝑠2, 𝑠3 > 0
and an initial guess 𝜂0 ∈ 𝑍 , the interface iteration corresponding to the Neumann–Neumann
method is given by finding (𝜂𝑛, 𝜆𝑛1 , 𝜆

𝑛
2 ) ∈ 𝑍 × 𝑍 × 𝑍 for 𝑛 = 1, 2, . . . such that{

𝑆𝑖𝜆
𝑛
𝑖 = 𝜒 − 𝑆𝜂𝑛−1 for 𝑖 = 1, 2,
𝜂𝑛 = 𝜂𝑛−1 + 𝑠2𝜆

𝑛
1 + 𝑠3𝜆

𝑛
2 .

(39)

Analogous results to Lemma 8.6 holds for the Dirichlet–Neumann and Neumann–Neumann
methods. The following result gives that the three methods are well defined.

Corollary 8.7. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. The Dirichlet–Neumann,
Neumann–Neumann, and Robin–Robin methods are well defined in the sense that each step
of (37) to (39) has a unique solution.

Proof. For the Dirichlet–Neumann and Neumann–Neumann methods the results follow
immediately from Corollary 8.4 since this implies that the interface iterations have unique
iterates. For the Robin–Robin method the result also follows since

⟨R𝜇, 𝜇⟩ ≥ ∥𝜇∥2
𝐿2
𝐿2 (Γ)

(R+ )
≥ 0 for all 𝜇 ∈ 𝑍,

which means that 𝑠0R + 𝑆𝑖 is coercive and therefore an isomorphism for all 𝑠0 > 0.

In order to illustrate the applicability of the derived framework, we will next prove
convergence of the Robin–Robin method. We begin by introducing a particular Gelfand
triple.

Lemma 8.8. If Assumption 2.1 holds, then 𝑍 is densely embedded into 𝐿2
𝐿2 (Γ) (R+).

Proof. Note first of all that 𝑍 ↩→ 𝐿2
𝐿2 (Γ) (R+) is clearly a continuous embedding. For density,

let 𝜂 ∈ 𝐿2
𝐿2 (Γ) (R+) and define

𝜇 = 𝜓−𝜂 ∈ 𝐿2 (R+; 𝐿2 (Γ(0))
)
.
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Now recall that 𝐻1/4 (R+) is dense in 𝐿2 (R+) and Λ(0) is dense in 𝐿2 (Γ(0)), see [10,
Lemma 4.2]. Therefore the algebraic tensor product space 𝐻1/4 (R+) ⊗ Λ(0) is dense in
𝐿2 (R+; 𝐿2 (Γ(0))

)
, see [35, Theorem 3.12]. It then follows that the larger space

𝐻1/4 (R+; 𝐿2 (Γ(0))
)
∩ 𝐿2 (R+;Λ(0)

)
is also dense in 𝐿2 (R+; 𝐿2 (Γ(0))

)
. Hence, there exists a sequence

𝜇𝑛 ∈ 𝐻1/4 (R+; 𝐿2 (Γ(0))
)
∩ 𝐿2 (R+;Λ(0)

)
that satisfies 𝜇𝑛 → 𝜇 in 𝐿2 (R+; 𝐿2 (Γ(0))

)
. It immediately follows from the fact that 𝜓 is

an isomorphism that the sequence 𝜂𝑛 = 𝜓𝜇𝑛 satisfies 𝜂𝑛 ∈ 𝑍 and 𝜂𝑛 → 𝜂 in 𝐿2
𝐿2 (Γ) (R+).

Since 𝜂 was arbitrary this shows that 𝑍 is dense in 𝐿2
𝐿2 (Γ) (R+).

By Lemma 8.8 together with the fact that 𝑍 and 𝐿2
𝐿2 (Γ) (R+) are Hilbert spaces, we have

the Gelfand triple
𝑍 ↩→ 𝐿2

𝐿2 (Γ) (R+) ↩→ 𝑍∗,

with dense embeddings. We recall the Riesz isomorphism R : 𝐿2
𝐿2 (Γ) (R+) → 𝐿2

𝐿2 (Γ) (R+)
∗:

⟨R𝜂, 𝜇⟩ = (𝜂, 𝜇)𝐿2
𝐿2 (Γ)

(R+ ) for all 𝜂 ∈ 𝐿2
𝐿2 (Γ) (R+), 𝜇 ∈ 𝑍. (40)

We trivially have the bounds

|⟨R𝜂, 𝜇⟩| ≤ ∥𝜂∥𝐿2
𝐿2 (Γ)

(R+ ) ∥𝜇∥𝐿2
𝐿2 (Γ)

(R+ ) for all 𝜂 ∈ 𝐿2
𝐿2 (Γ) (R+), 𝜇 ∈ 𝑍 (41)

and
⟨R𝜂, 𝜂⟩ ≥ ∥𝜂∥2

𝐿2
𝐿2 (Γ)

(R+ )
for all 𝜂 ∈ 𝑍. (42)

The variational framework appears to be too general for analyzing the convergence of the
Peaceman–Rachford iteration. Therefore, we introduce the Steklov–Poincaré operators as
affine unbounded operators on 𝐿2

𝐿2 (Γ) (R+) before we prove that the iteration converges. To
this end, let

𝐷 (S𝑖) = {𝜂 ∈ 𝑍 : 𝑆𝑖𝜂 − 𝜒𝑖 ∈ 𝐿2
𝐿2 (Γ) (R+)

∗},

𝐷 (S) = {𝜂 ∈ 𝑍 : 𝑆𝜂 − 𝜒 ∈ 𝐿2
𝐿2 (Γ) (R+)

∗},

and define the unbounded affine operators

S𝑖 : 𝐷 (S𝑖) ⊆ 𝐿2
𝐿2 (Γ) (R+) → 𝐿2

𝐿2 (Γ) (R+) : 𝜂 ↦→ R−1 (𝑆𝑖𝜂 − 𝜒𝑖),

S : 𝐷 (S) ⊆ 𝐿2
𝐿2 (Γ) (R+) → 𝐿2

𝐿2 (Γ) (R+) : 𝜂 ↦→ R−1 (𝑆𝜂 − 𝜒).

In 𝐿2
𝐿2 (Γ) (R+) the Steklov–Poincaré equation is to find 𝜂 ∈ 𝐷 (S) such that

S𝜂 = 0 (43)
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and the Peaceman–Rachford iteration takes the following form: For each 𝑛 = 1, 2, . . ., find
(𝜂𝑛1 , 𝜂

𝑛
2 ) ∈ 𝐷 (S1) × 𝐷 (S2) such that{

(𝑠0𝐼 + S1)𝜂𝑛1 = (𝑠0𝐼 − S2)𝜂𝑛−1
2 ,

(𝑠0𝐼 + S2)𝜂𝑛2 = (𝑠0𝐼 − S1)𝜂𝑛1 .
(44)

Here, 𝜂0
2 ∈ 𝐷 (S2) is a given initial guess. We now verify that (43) is indeed a restriction of

the weak Steklov–Poincaré equation (36).

Lemma 8.9. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. If 𝜂 ∈ 𝐷 (S) solves the 𝐿2-
Steklov–Poincaré equation (43), then 𝜂 also solves the weak Steklov–Poincaré equation (36).

Proof. From (43) we have

(R−1 (𝑆𝜂 − 𝜒), 𝜇)𝐿2
𝐿2 (Γ)

(R+ ) = 0 for all 𝜇 ∈ 𝐿2
𝐿2 (Γ) (R+).

Therefore, we get by (40) that

⟨𝑆𝜂 − 𝜒, 𝜇⟩ = (R−1 (𝑆𝜂 − 𝜒), 𝜇)𝐿2
𝐿2 (Γ)

(R+ ) = 0

for all 𝜇 ∈ 𝑍 .

A similar result holds for the Peaceman–Rachford iteration. The proof is left out since
it is similar to the proof of Lemma 8.9.

Lemma 8.10. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. If (𝜂𝑛1 , 𝜂
𝑛
2 )𝑛≥1 solves the

𝐿2-Peaceman–Rachford iteration (44) with 𝜂0
2 ∈ 𝐷 (S2), then (𝜂𝑛1 , 𝜂

𝑛
2 )𝑛≥1 also solves the

weak Peaceman–Rachford iteration (37) with the same initial guess.

Lemma 8.11. Suppose that Assumptions 2.1, 5.2, and 5.3 hold. Then S𝑖 , 𝑖 = 1, 2, satisfy
the monotonicity property

(S𝑖𝜂 − S𝑖𝜇, 𝜂 − 𝜇)𝐿2
𝐿2 (Γ)

(R+ ) ≥ 𝑐∥𝜂 − 𝜇∥
2
𝑍 for all 𝜂, 𝜇 ∈ 𝐷 (S𝑖). (45)

Moreover, for any 𝑠0 ≥ 0 the operators 𝑠0𝐼 + S𝑖 : 𝐷 (S𝑖) → 𝐿2
𝐿2 (Γ) (R+), 𝑖 = 1, 2, are iso-

morphisms. Similar results hold for S. In particular, there exists a unique solution to (43)
and the iteration (44) is well defined.

Proof. The monotonicity follows from (35) and (40), since

(S𝑖𝜂 − S𝑖𝜇, 𝜂 − 𝜇)𝐿2
𝐿2 (Γ)

(R+ ) = ⟨(𝑆𝑖𝜂 − 𝜒𝑖) − (𝑆𝑖𝜇 − 𝜒𝑖), 𝜂 − 𝜇⟩

= ⟨𝑆𝑖 (𝜂 − 𝜇), 𝜂 − 𝜇⟩ ≥ 𝑐∥𝜂 − 𝜇∥2
𝑍

for all 𝜂, 𝜇 ∈ 𝐷 (S𝑖). Let 𝜇 ∈ 𝐿2
𝐿2 (Γ) (R+) be arbitrary. Then 𝜒𝑖 + R𝜇 ∈ 𝑍∗, and by Corol-

lary 8.4, there exists a unique 𝜂 ∈ 𝑍 such that (𝑠0R + 𝑆𝑖)𝜂 = 𝜒𝑖 + R𝜇 in 𝑍∗. Rearranging
yields that 𝑆𝑖𝜂 − 𝜒𝑖 = R(𝜇 − 𝑠0𝜂) ∈ 𝐿2

𝐿2 (Γ) (R+)
∗, i.e., 𝜂 ∈ 𝐷 (S𝑖) with

(𝑠0𝐼 + S𝑖)𝜂 = 𝑠0𝜂 + R−1 (𝑆𝑖𝜂 − 𝜒𝑖) = 𝜇.
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Thus, we have shown that (𝑠0𝐼 + S𝑖) is an isomorphism. The proof for S is similar and is
therefore left out.

In order to proceed with the convergence analysis, we require the following regularity
of the solution to the weak parabolic equation (32).

Assumption 8.12. The functionals

𝜇 ↦→ 𝑎𝑖 (𝑞𝑖𝑢, 𝐹𝑖𝜇) − ⟨ 𝑓𝑖 , 𝐹𝑖𝜇⟩, 𝑖 = 1, 2,

are elements in 𝐿2
𝐿2 (Γ) (R+)

∗, where 𝑢 ∈ 𝑊 is the solution to (32).

This assumption is somewhat implicit, but can be interpreted as the solution 𝑢 having a
normal derivative on Γ in 𝐿2

𝐿2 (Γ) (R+).

Lemma 8.13. Suppose that Assumptions 2.1, 5.2, 5.3, and 8.12 hold. If 𝜂 solves the 𝐿2-
Steklov–Poincaré equation (43) then 𝜂 ∈ 𝐷 (S1) ∩ 𝐷 (S2).

Proof. Let 𝜂 ∈ 𝐷 (S) be the solution to (43). By Lemma 8.5 and Theorem 7.3, we have
the identification 𝑞𝑖𝑢 = 𝐹𝑖𝜂 + 𝐺𝑖 𝑓𝑖 , where 𝑢 ∈ 𝑊 is the solution to the weak parabolic
equation (32). Assumption 8.12 then yields that

𝜇 ↦→ ⟨𝑆𝑖𝜂 − 𝜒𝑖 , 𝜇⟩ = 𝑎𝑖 (𝐹𝑖𝜂, 𝐹𝑖𝜇) + 𝑎𝑖 (𝐺𝑖 𝑓𝑖 , 𝐹𝑖𝜇) − ⟨ 𝑓𝑖 , 𝐹𝑖𝜇⟩
= 𝑎𝑖 (𝑞𝑖𝑢, 𝐹𝑖𝜇) − ⟨ 𝑓𝑖 , 𝐹𝑖𝜇⟩

is an element in 𝐿2
𝐿2 (Γ) (R+)

∗, i.e., 𝜂 ∈ 𝐷 (S𝑖) for 𝑖 = 1, 2.

Lemma 8.14. Suppose that Assumptions 2.1, 5.2, 5.3, and 8.12 hold. Let 𝜂 be the solution
to the 𝐿2-Steklov–Poincaré equation (43) and (𝜂𝑛1 , 𝜂

𝑛
2 )𝑛≥1 be the 𝐿2-Peaceman–Rachford

iterates (44) with 𝜂0
2 ∈ 𝐷 (S2). Then we have the limit

(S𝑖𝜂𝑛𝑖 − S𝑖𝜂, 𝜂𝑛𝑖 − 𝜂)𝐿2
𝐿2 (Γ)

(R+ ) → 0 (46)

as 𝑛 tends to infinity.

Lemma 8.14 is a consequence of the abstract result [28, Proposition 1]. The latter requires
the monotonicity (45) and the fact that the solution to (43) satisfies 𝜂 ∈ 𝐷 (S1) ∩ 𝐷 (S2),
which follows from Lemma 8.13. A simpler proof of Lemma 8.14 can be found in [10,
Lemma 8.8].

We are now in a position to prove that the Robin–Robin method converges.

Theorem 8.15. Suppose that Assumptions 2.1, 5.2, 5.3, and 8.12 hold. Let 𝑢 be the solution
to the weak parabolic equation (32) and 𝜂 be the solution to the 𝐿2-Steklov–Poincaré equa-
tion (43). The iterates (𝜂𝑛1 , 𝜂

𝑛
2 )𝑛≥1 of the 𝐿2-Peaceman–Rachford iteration (44) converges

to 𝜂, i.e.,
∥𝜂𝑛1 − 𝜂∥𝑍 + ∥𝜂𝑛2 − 𝜂∥𝑍 → 0
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as 𝑛 tends to infinity. Moreover the weak Robin–Robin approximation (𝑢𝑛1 , 𝑢
𝑛
2 )𝑛≥1 converges

to (𝑢1, 𝑢2) = (𝑞1𝑢, 𝑞2𝑢), i.e.,

∥𝑢𝑛1 − 𝑢1∥𝑊1 + ∥𝑢𝑛2 − 𝑢2∥𝑊2 → 0

as 𝑛 tends to infinity.

Proof. From (45) and (46) we obtain

∥𝜂𝑛1 − 𝜂∥2
𝑍 + ∥𝜂𝑛2 − 𝜂∥2

𝑍

≤ 𝐶
(
(S1𝜂

𝑛+1
1 − S1𝜂, 𝜂

𝑛+1
1 − 𝜂)𝐿2

𝐿2 (Γ)
(R+ ) + (S2𝜂

𝑛
2 − S2𝜂, 𝜂

𝑛
2 − 𝜂)𝐿2

𝐿2 (Γ)
(R+ )

)
→ 0

as 𝑛 tends to infinity. By Lemmas 8.5 and 8.6 and Theorem 7.3, one has the identities

(𝑢1, 𝑢2) = (𝐹1𝜂 + 𝐺1 𝑓1, 𝐹2𝜂 + 𝐺2 𝑓2) and (𝑢𝑛1 , 𝑢
𝑛
2 ) = (𝐹1𝜂

𝑛
1 + 𝐺1 𝑓1, 𝐹2𝜂

𝑛
2 + 𝐺2 𝑓2).

This together with the limit above and the fact that 𝐹𝑖 is bounded yields that

∥𝑢𝑛1 − 𝑢1∥𝑊1 + ∥𝑢𝑛2 − 𝑢2∥𝑊2 = ∥𝐹1 (𝜂𝑛1 − 𝜂)∥𝑊1 + ∥𝐹2 (𝜂𝑛2 − 𝜂)∥𝑊2

≤ 𝐶
(
∥𝜂𝑛1 − 𝜂∥𝑍 + ∥𝜂𝑛2 − 𝜂∥𝑍

)
→ 0

as 𝑛 tends to infinity.
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