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Abstract. We prove convergence for the nonoverlapping Robin–Robin method applied to non-
linear elliptic equations with a p-structure, including degenerate diffusion equations governed by the
p-Laplacian. This nonoverlapping domain decomposition is commonly encountered when discretiz-
ing elliptic equations, as it enables the usage of parallel and distributed hardware. Convergence has
been derived in various linear contexts, but little has been proven for nonlinear equations. Hence,
we develop a new theory for nonlinear Steklov–Poincaré operators based on the p-structure and
the Lp-generalization of the Lions–Magenes spaces. This framework allows the reformulation of
the Robin–Robin method into a Peaceman–Rachford splitting on the interfaces of the subdomains,
and the convergence analysis then follows by employing elements of the abstract theory for mono-
tone operators. The analysis is performed on Lipschitz domains and without restrictive regularity
assumptions on the solutions.
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1. Introduction. Approximating the solution of an elliptic partial differential
equation (PDE) typically demands large-scale computations requiring the usage of
parallel and distributed hardware. In this context, a nonoverlapping domain decom-
position method is a suitable choice, as it can be implemented in parallel with local
communication. After decomposing the equation’s spatial domain into nonoverlapping
subdomains, the method consists of an iterative procedure that solves the equation
on each subdomain and thereafter communicates the results via the boundaries to the
adjacent subdomains. For a general introduction we refer to [18, 23].

There is a vast amount of methods in the literature, employing different trans-
mission conditions between the subdomains. The standard examples are based on
the alternate use of Dirichlet and Neumann boundary conditions, but a competitive
alternative is the Robin–Robin method, where the same type of Robin boundary con-
dition is used for all subdomains. The Robin–Robin method was introduced in [13]
together with a convergence proof when applied to linear elliptic equations. After ap-
plying a finite element discretization, convergence rates of the form 1−O(

√
h), with

h denoting the mesh width, have been derived in various linear contexts [9, 15, 24];
also see [7]. For generalizations and further applications of the Robin–Robin method
applied to linear PDEs we refer to [3, 9] and references therein.

When considering nonlinear elliptic PDEs the literature is more limited. Conver-
gence studies relating to overlapping Schwarz methods are given in [6, 21, 22]. How-
ever, there are hardly any results dealing with nonoverlapping domain decomposition
schemes. One exception is [2], where the convergence of the Dirichlet–Neumann and
Robin–Robin methods are analyzed for a family of one-dimensional elliptic equations.
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A related study is [20], where the equivalence between a class of nonlinear elliptic
equations and the corresponding transmission problems are proven for nonoverlap-
ping decompositions with cross points, but no numerical scheme is considered. Apart
from [22], all these nonlinear studies rely on frameworks similar to the linear case,
e.g., assuming that the diffusion is uniformly positive.

Hence, the aim of this paper is to derive a genuinely nonlinear extension of the
linear convergence result given in [13] for the nonoverlapping Robin–Robin method.
We will focus on nonlinear elliptic equations of the form

(1.1)

{
−∇ · α(∇u) + g(u) = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rd, d = 1, 2, . . . , with boundary ∂Ω. The functions α
and g are assumed to have a p-structure; defined in section 2. This structure enables a
clear-cut convergence analysis for a broad family of degenerate elliptic equations, i.e.,
α(∇u) may vanish for nonzero values of u. The latter typically prevents the existence
of a strong solution in W 2,p(Ω).

The archetypical examples of nonlinear elliptic equations with a p-structure are
those governed by the p-Laplacian, where α(z) = |z|p−2z. Examples include the
computation of the nonlinear resolvent

(1.2) −∇ · (|∇u|p−2∇u) + λu = f,

arising in the context of an implicit Euler discretization of the parabolic p-Laplace
equation, and the nonlinear reaction-diffusion problem

(1.3) −∇ · (|∇u|p−2∇u) + λ|u|p−2u = f.

For sake of simplicity, we decompose the original domain Ω into two nonoverlap-
ping subdomains {Ωi, for i = 1, 2}, with boundaries denoted by ∂Ωi, and separated
by the interface Γ, i.e.,

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and Γ = (∂Ω1 ∩ ∂Ω2) \ ∂Ω.

Two examples of such decompositions are illustrated in Figures 1a and 1b, respec-
tively. The analysis presented here can also, in a trivial fashion, be extended to the
case when Ωi is a family of nonadjacent subdomains, e.g., the stripewise domain de-
composition illustrated in Figure 1c. The strong form of the Robin–Robin method
applied to (1.1) is then to find (un1 , u

n
2 ), for n = 1, 2, . . . , such that

(1.4)



−∇ · α(∇un+1
1 ) + g(un+1

1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 \ Γ,

α(∇un+1
1 ) · ν1 + sun+1

1 = α(∇un2 ) · ν1 + sun2 on Γ,

−∇ · α(∇un+1
2 ) + g(un+1

2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 \ Γ,

α(∇un+1
2 ) · ν2 + sun+1

2 = α(∇un+1
1 ) · ν2 + sun+1

1 on Γ,

where νi denotes the unit outward normal vector of ∂Ωi, u
0
2 is a given initial guess

and s > 0 is a method parameter. Here, uni and uni |Γ approximate the solution u
restricted to Ωi and Γ, respectively.
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(a) (b)

(c) (d)

Fig. 1: Examples of different domain decompositions: (a) illustrates a domain de-
composition with two intersection points; (b) a decomposition without intersection
points; (c) a stripewise decomposition without cross points; (d) a full decomposition
with cross points.

The convergence analysis is organized as follows. For linear elliptic equations, i.e.,
equations with a 2-structure, the analysis relies on the trace operator from H1(Ωi)

onto H1/2(∂Ωi), and the Lions–Magenes spaces H
1/2
00 (Γ). We therefore start by in-

troducing the generalized p-version of the trace operator, now given from W 1,p(Ωi)
onto W 1−1/p,p(∂Ωi), and the corresponding Lions–Magenes spaces Λi; see sections 3
and 4. There is a surprising lack of proofs in the literature dealing with this gen-
eralized p-setting. We therefore make an effort to give precise definitions and proof
references.

With the correct function spaces in place, we prove that the nonlinear transmis-
sion problem is equivalent to the weak form of (1.1) in Theorem 5.2, and introduce the
new nonlinear Steklov–Poincaré operators, as maps from Λi to Λ∗i , in section 6. The
latter yields that the transmission problem can be stated as a problem on Γ and the
Robin–Robin method reduces to the Peaceman–Rachford splitting. The main chal-
lenge is then to derive the fundamental properties of the nonlinear Steklov–Poincaré
operators from the p-structure, which is achieved in section 7. By interpreting the
nonlinear Steklov–Poincaré operators as unbounded, monotone maps on L2(Γ) we
finally prove that the Robin–Robin method is well defined on W 1,p(Ω1)×W 1,p(Ω2);
see Corollary 8.6, and convergent in the same space; see Theorem 8.9. The latter
relies on the abstract theory of the Peaceman–Rachford splittings [14].

The continuous convergence analysis presented here also holds in the finite dimen-
sional case obtained after a suitable spatial discretization, e.g., by employing finite
elements. However, we will limit ourselves to the continuous case in this paper. Hence,
important issues including convergence rates for the finite-dimensional case and the
influence of the mesh width on the optimal choice of the method parameter s will be
explored elsewhere.

Finally, ci and Ci will denote generic positive constants that assume different
values at different occurrences.



4 E. ENGSTRÖM, E. HANSEN

2. Nonlinear elliptic equations with p-structure. Throughout the paper,
we will consider the nonlinear elliptic equation (1.1) with f ∈ L2(Ω) and Ω being
a bounded Lipschitz domain. The equation is assumed to have a p-structure of the
form:

Assumption 2.1. The parameters (p, r) and the functions α : Rd → Rd, g : R→ R
satisfy the properties below.

• Let p ∈ [2,∞) and r ∈ (1,∞). If p < d then r ≤ dp/
(
2(d− p)

)
+ 1.

• The functions α and g are continuous and satisfy the growth conditions

|α(z)| ≤ C1|z|p−1 and |g(x)| ≤ C2|x|r−1, for all z ∈ Rd, x ∈ R.

• The function α is strictly monotone with the bound(
α(z)− α(z̃)

)
· (z − z̃) ≥ c1|z − z̃|p, for all z, z̃ ∈ Rd.

• The function α is coercive with the bound

α(z) · z ≥ c2|z|p, for all z ∈ Rd.

• The function g is strictly monotone and coercive with the bounds(
g(x)− g(x̃)

)
(x− x̃) ≥ c3|x− x̃|r and g(x)x ≥ c4|x|r, for all x, x̃ ∈ R.

Example 2.2. The equation (1.2) satisfies Assumption 2.1 with α(z) = |z|p−2z,
λ > 0, g(x) = λx and r=2. The same holds for equation (1.3) with g(x) = λ|x|p−2x
and r = p.

Remark 2.3. The last assertion of Assumption 2.1 is made in order to ensure that
the convergence analysis of the domain decomposition is valid without employing the
Poincaré inequality, which allows decompositions where ∂Ω\∂Ωi = ∅; see Figure 1b. If
the latter setting is excluded, then the analysis is valid for a broader class of functions
g, especially g = 0.

Remark 2.4. Possible generalizations of Assumption 2.1, which we omit for sake
of notational simplicity, include the cases: dependence on the spatial variable and
first-order terms, e.g., α(∇u) = α(x, u,∇u); the parameter choice p ∈ (2d/(d+ 1), 2),
which requires an additional set of embedding results for trace spaces; other variations
similar to the p-Laplacian, e.g.,

α(z) = (|z1|p−2z1, . . . , |zd|p−2zd),

which only require slight reformulations of the monotonicity and coercivity conditions.

Let V = W 1,p
0 (Ω) and define the form a : V × V → R by

a(u, v) =

∫
Ω

α(∇u) · ∇v + g(u)v dx.

The weak form of (1.1) is to find u ∈ V such that

(2.1) a(u, v) = (f, v)L2(Ω), for all v ∈ V.

The p-structure implies that there exist a unique weak solution of (2.1); see, e.g., [19,
Theorem 2.36]. A central part of the existence proof, and our convergence analysis
as well, is to observe that the p-structure directly implies that the form a is bounded,
strictly monotone and coercive.
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Lemma 2.5. If Assumption 2.1 holds, then a : V × V → R is well defined and
satisfies the upper bound

|a(u, v)| ≤ C1

(
‖∇u‖p−1

Lp(Ω)d
‖∇v‖

Lp(Ω)d
+ ‖u‖r−1

Lr(Ω)‖v‖Lr(Ω)

)
,

the strict monotonicity bound

a(u, u− v)− a(v, u− v) ≥ c1
(
‖∇(u− v)‖p

Lp(Ω)d
+ ‖u− v‖rLr(Ω)

)
and the coercivity bound

a(u, u) ≥ c2
(
‖∇u‖p

Lp(Ω)d
+ ‖u‖rLr(Ω)

)
,

for all u, v ∈ V .

In order to conduct the convergence analysis, we also make the following addi-
tional regularity assumption on the weak solution.

Assumption 2.6. The weak solution u ∈ V of (2.1) satisfies α(∇u) ∈ C(Ω)d.

Note that the above regularity assumption does not imply that u is a strong solution
in W 2,p(Ω). A possible generalization of Assumption 2.6 is discussed in Remark 8.3.

Example 2.7. Consider the equations given by the p-Laplacian in Example 2.2. If
p ≥ d then the weak solution u ∈ V is also in C(Ω). If in addition f ∈ L∞(Ω) and
the boundary ∂Ω is C1,β , then [12, Theorem 1] yields that u ∈ C1,β(Ω). The latter
implies that Assumption 2.6 is valid in this context.

Finally, we will make frequent use of the fact that, under Assumption 2.1, the
standard W 1,p(Ω)-norm is equivalent to the norm

(2.2) u 7→ ‖∇u‖Lp(Ω)d + ‖u‖Lr(Ω).

For r ≥ p this follows directly by the Sobolev embedding theorem together with the
assumed restrictions on (p, r). For r < p the equivalence follows by an additional
bootstrap argument.

3. Function spaces and trace operators on Ωi. We start by considering a
manifold M in Rd, which will play the role of ∂Ωi or Γ. The manifold M is said to
be Lipschitz if there exist open, overlapping sets Θr such that

M =

m⋃
r=1

Θr,

where each Θr can be described as the graph of a Lipschitz continuous function
br. More precisely, there exists (d − 1)-dimensional cubes θr and local charts ψr :
Θr → θr that are bijective and Lipschitz continuous. The charts have the structure
ψ−1
r = A−1

r ◦Qr, where Ar : Rd → Rd is a coordinate transformation and

Qr : θr → Rd : xr 7→
(
xr, br(xr)

)
for the Lipschitz continuous map br : θr → R. A function µ : M → R now has the
local components µ ◦ ψ−1

r . We refer to [10, Section 6.2] for further details.
On a Lipschitz manifold we may introduce a measure [16, Chapter 3] and thus

define the integral and the space Lp(M); see, e.g., [4]. From [4, Chapters 3.4–3.5] it
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follows that Lp(M) is a Banach space and that L2(M) is a Hilbert space with the
inner product

(η, µ)L2(M) =

∫
M
ηµdS.

Let {ϕr} be a partition of unity of M. The integral then satisfies

(3.1)

∫
M
µdS =

m∑
r=1

∫
θr

(µϕr) ◦ ψ−1
r |nr|dx,

where nr = (∂1br, ∂2br, . . . , ∂d−1br,−1); see [16, Theorem 3.9]. Seemingly obvious
properties of the integral, including∫

M
µdS =

∫
M0

µdS +

∫
M\M0

µdS,

relies heavily on the observation that the integral is independent of the representation
(Θr, Ar, br) and the choice of partition of unity {ϕr}; see [16, Theorems 3.5 and 3.7]
and the comments thereafter.

The equality (3.1) also shows that our integral and Lp-spaces are equivalent to
the ones used in [10]. Moreover, by [10, Lemma 6.3.5], the Lp-norm used here is
equivalent to the norm

µ 7→
( m∑
r=1

‖µ ◦ ψ−1
r ‖

p
Lp(θr)

)1/p

.

Finally, recall that for a Lipschitz manifold M the unit outward normal vector ν =
(ν1, . . . , νd) is defined almost everywhere; see [10, Section 6.10.1]. The normal vector
is given locally by ν ◦ ψ−1

r = nr/|nr| and the Lipschitz continuity of br yields that
ν` ∈ L∞(M).

Assumption 3.1. The boundaries ∂Ωi and the interface Γ are all (d−1)-dimensional
Lipschitz manifolds.

We use the notation (Θi
r, θ

i
r,mi, ψ

i
r, b

i
r, φ

i
r, νi) for the quantities related to the

local representations of ∂Ωi. For later use, we note that

ν1 = −ν2 on Γ.

Next, we define the fractional Sobolev spaces on the (d−1)-dimensional cubes θr. Let
0 < s < 1, then W s,p(θr) is defined as all u ∈ Lp(θr) such that

|u|s,θr =
(∫

θr

∫
θr

|u(x)− u(y)|p

|x− y|d−1+sp
dxdy

)1/p

<∞.

The corresponding norm is given by

‖u‖W s,p(θr) = ‖u‖Lp(θr) + |u|s,θr .

Having defined the fractional Sobolev space on θir we can also define them on ∂Ωi.
For 0 < s < 1, introduce

W s,p(∂Ωi) = {µ ∈ Lp(∂Ωi) : µ ◦ (ψir)
−1 ∈W s,p(θir), for r = 1, . . . ,mi},
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equipped with the norm

‖µ‖W s,p(∂Ωi) =
( mi∑
r=1

‖µ ◦ (ψir)
−1‖pW s,p(θir)

)1/p

.

By the definitions of the norms, it follows directly that

‖µ‖Lp(∂Ωi) ≤ C‖µ‖W s,p(∂Ωi).

Furthermore, the space W s,p(∂Ωi) is complete and reflexive; see [10, Definition 6.8.6]
and the comment thereafter. Next, we recapitulate the trace theorem for W 1,p-
functions on Lipschitz domains; see, e.g., [10, Theorems 6.8.13 and 6.9.2].

Lemma 3.2. If the Assumptions 2.1 and 3.1 are valid, then there exists a surjec-
tive bounded linear operator T∂Ωi : W 1,p(Ωi) → W 1−1/p,p(∂Ωi) such that T∂Ωiu =
u|∂Ωi

when u ∈ C∞(Ωi). The operator T∂Ωi
has a bounded linear right inverse

R∂Ωi
: W 1−1/p,p(∂Ωi)→W 1,p(Ωi).

We can then define the Sobolev spaces on Ωi required for the domain decomposition,
namely

V 0
i = W 1,p

0 (Ωi) and Vi = {v ∈W 1,p(Ωi) : (T∂Ωiv)|∂Ωi\Γ = 0}.

The spaces are equipped with the norm

‖v‖Vi = ‖∇v‖Lp(Ωi)d + ‖v‖Lr(Ωi).

As for (2.2), this norm is equivalent to the standard W 1,p(Ωi)-norm under Assump-
tion 2.1. Furthermore, the spaces V 0

i and Vi are reflexive Banach spaces.

4. Function spaces and trace operators on Γ. The Lp-form of the Lions–
Magenes spaces can be defined as

Λi = {µ ∈ Lp(Γ) : Eiµ ∈W 1−1/p,p(∂Ωi)}, with ‖µ‖Λi
= ‖Eiµ‖W 1−1/p,p(∂Ωi).

Here, Eiµ denotes the extension by zero of µ to ∂Ωi. We also define the trace space

Λ = {µ ∈ Lp(Γ) : µ ∈ Λi, for i = 1, 2}, with ‖µ‖Λ = ‖µ‖Λ1
+ ‖µ‖Λ2

.

Lemma 4.1. If the Assumptions 2.1 and 3.1 hold, then Λi and Λ are reflexive
Banach spaces.

Proof. Observe that Ei is a linear isometry from Λi onto

(4.1) R(Ei) = {µ ∈W 1−1/p,p(∂Ωi) : µ|∂Ω\Γ = 0}.

Next, consider a sequence {µk} ⊂ R(Ei) such that µk → µ in W 1−1/p,p(∂Ωi). Then
µk|Ωi\Γ = 0 and µk → µ in Lp(∂Ωi), which implies that

(4.2)

∫
∂Ωi\Γ

|µ|p dS =

∫
∂Ωi\Γ

|µk − µ|p dS ≤
∫
∂Ωi

|µk − µ|p dS → 0, as k →∞.

Hence, µ ∈ R(Ei) and consequently R(Ei) is a closed subset of W 1−1/p,p(∂Ωi). The
space Λi is therefore isomorphic to a closed subset of the reflexive Banach space
W 1−1/p,p(∂Ωi), i.e., Λi is complete and reflexive [11, Chapter 8, Theorem 15].
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To prove that the same holds true for Λ introduce the reflexive Banach space
X = W 1−1/p,p(∂Ω1)×W 1−1/p,p(∂Ω2), with the norm

‖(µ1, µ2)‖X = ‖µ1‖W 1−1/p,p(∂Ω1) + ‖µ2‖W 1−1/p,p(∂Ω2),

and the operator E : Λ→ X defined by Eµ = (E1µ,E2µ). As E is a linear isometry
from Λ onto

R(E) = {(µ1, µ2) ∈ X : µ1|∂Ω1\Γ = 0, µ2|∂Ω2\Γ = 0, µ1|Γ = µ2|Γ},

it is again sufficient to prove that R(E) is a closed subset of X. Let {(µk1 , µk2)} ⊂ R(E)
be a convergent sequence in X with the limit (µ1, µ2). By the same argument as (4.2),
we obtain that µi|Ωi\Γ = 0. As µk1 |Γ = µk2 |Γ, we also have the limit∫

Γ

|µ1 − µ2|p dS ≤ 2p−1
( ∫

Γ

|µk1 − µ1|p dS +

∫
Γ

|µk2 − µ2|p dS
)
→ 0, as k →∞,

i.e., µ1|Γ = µ2|Γ in Lp(Γ) and we obtain that (µ1, µ2) ∈ R(E). Thus, R(E) is closed
and Λ is therefore a reflexive Banach space.

Lemma 4.2. If the Assumptions 2.1 and 3.1 hold, then Λi and Λ are dense in
L2(Γ).

The proof of the lemma is almost identical to the proof of [10, Theorem 6.6.3] and is
therefore left out.

Remark 4.3. We conjecture that Λ1 = Λ2. However, we will move on to a L2(Γ)-
framework for which it is not necessary to make this identification.

Collecting these results yield the Gelfand triplets

Λi
d
↪→ L2(Γ) ∼= L2(Γ)∗

d
↪→ Λ∗i and Λ

d
↪→ L2(Γ) ∼= L2(Γ)∗

d
↪→ Λ∗.

For future use, we introduce the Riesz isomorphism on L2(Γ) given by

J : L2(Γ)→ L2(Γ)∗ : µ 7→ (µ, ·)L2(Γ),

which satisfies the relations

〈Jη, µi〉Λ∗
i×Λi

= (η, µi)L2(Γ) and 〈Jη, µ〉Λ∗×Λ = (η, µ)L2(Γ),

for all η ∈ L2(Γ), µi ∈ Λi and µ ∈ Λ. Here, 〈·, ·〉X∗×X denotes the dual pairing be-
tween a Banach space X and its dual X∗. In the following we will drop the subscripts
on the dual parings.

In order to relate the spaces Vi and Λi, we observe that for v ∈ Vi one has
T∂Ωi

v ∈ R(Ei); see (4.1). Hence, the trace operator

Ti : Vi → Λi : v 7→
(
T∂Ωi

v
)
|Γ

is well defined. We also introduce the linear operator

Ri : Λi → Vi : µ 7→ R∂Ωi
Eiµ.

Lemma 4.4. If the Assumptions 2.1 and 3.1 hold, then Ti and Ri are bounded,
and Ri is a right inverse of Ti.
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Proof. For v ∈ Vi and µ ∈ Λi we have, by Lemma 3.2, that

‖Tiv‖Λi
= ‖Ei

(
(T∂Ωi

v)|Γ
)
‖W 1−1/p,p(∂Ωi) = ‖T∂Ωi

v‖W 1−1/p,p(∂Ωi) ≤ Ci‖v‖Vi

and ‖Riµ‖Vi
= ‖R∂Ωi

Eiµ‖Vi
≤ Ci‖Eiµ‖W 1−1/p,p(∂Ωi) = Ci‖µ‖Λi

.

Hence, the linear operators Ti and Ri are bounded. Furthermore, for every µ ∈ Λi
we have

TiRiµ =
(
T∂Ωi

R∂Ωi
Eiµ

)
|Γ = (Eiµ)|Γ = µ,

i.e., Ri is a right inverse of Ti.

We continue by deriving a few useful properties related to the operator Ti.

Lemma 4.5. If the Assumptions 2.1 and 3.1 hold and v ∈ V , then µ = T1v|Ω1
=

T2v|Ω2 is an element in Λ.

Proof. Let v ∈ V . As C∞0 (Ω) is dense in V , there exists a sequence {vk} ⊂ C∞0 (Ω)
such that vk → v in V . Set vi = v|Ωi and vki = vk|Ωi . Clearly, T1v

k
1 = T2v

k
2 . Since

vk → v in V , we also have that vki → vi in Vi. The continuity of Ti then implies that
Tiv

k
i → Tivi in Λi. Putting this together gives us

Λ1 3 T1v1 = lim
k→∞

T1v
k
1 = lim

k→∞
T2v

k
2 = T2v2 ∈ Λ2 in Lp(Γ).

If we now define µ = T1v1 = T2v2, then µ is an element in Λ = Λ1 ∩ Λ2.

Lemma 4.6. Let the Assumptions 2.1 and 3.1 hold. If two elements v1 ∈ V1 and
v2 ∈ V2 satisfies T1v1 = T2v2, then v = {v1 on Ω1; v2 on Ω2} is an element in V .

Proof. It is clear that v ∈ Lp(Ω). For each component 1 ≤ ` ≤ d, there exists a
weak derivative ∂`vi ∈ Lp(Ωi) of vi ∈ Vi ⊂W 1,p(Ωi). If we define

z` = {∂`v1 on Ω1; ∂`v2 on Ω2},

then z` ∈ Lp(Ω). Let w ∈ C∞0 (Ω) and set wi = w|Ωi
∈ C∞(Ωi). The W 1,p(Ωi)-version

of Green’s formula [17, Section 3.1.2] yields that∫
Ω

z`w dx =

2∑
i=1

∫
Ωi

∂`vi wi dx =

2∑
i=1

−
∫

Ωi

vi ∂`wi dx+

∫
∂Ωi

(T∂Ωi
vi)wiν

`
i dS

= −
∫

Ω

v∂`w dx+

2∑
i=1

∫
Γ

(Tivi)wν
`
i dS = −

∫
Ω

v∂`w dx,

i.e., z` is the `th weak partial derivative of v. By construction T∂Ωv = 0, and v is
therefore an element in V .

5. Transmission problem and the Robin–Robin method. In order to state
the Robin–Robin method we reformulate the nonlinear elliptic equation (2.1) on Ω
into two equations on Ωi connected via Γ, i.e., we consider a nonlinear transmission
problem. To this end, on each Vi we define ai : Vi × Vi → R by

ai(ui, vi) =

∫
Ωi

α(∇ui) · ∇vi + g(ui)vi dx.

We also define fi = f |Ωi
∈ L2(Ωi).
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Lemma 5.1. If the Assumptions 2.1 and 3.1 hold, then ai : Vi × Vi → R is well
defined and satisfies the growth, strict monotonicity and coercivity bounds stated in
Lemma 2.5, with the terms (a, V,Ω) replaced by (ai, Vi,Ωi).

The weak form of the nonlinear transmission problem is then to find (u1, u2) ∈ V1×V2

such that

(5.1)


ai(ui, vi) = (fi, vi)L2(Ωi), for all vi ∈ V 0

i , i = 1, 2,

T1u1 = T2u2,∑2
i=1 ai(ui, Riµ)− (fi, Riµ)L2(Ωi) = 0, for all µ ∈ Λ.

The framework given in section 4 enables us to prove equivalence between the non-
linear elliptic equation and the nonlinear transmission problem along the same lines
as done for linear equations [18, Lemma 1.2.1].

Theorem 5.2. Let Assumptions 2.1 and 3.1 hold. If u ∈ V solves (2.1), then
(u1, u2) = (u|Ω1 , u|Ω2) solves (5.1). Conversely, if (u1, u2) solves (5.1), then u =
{u1 on Ω1; u2 on Ω2} solves (2.1).

Proof. Assume that u ∈ V solves (2.1) and define (u1, u2) = (u|Ω1
, u|Ω2

) ∈ V1×V2.
For vi ∈ V 0

i we can extend by zero to wi ∈ V , by using Lemma 4.6. Then

ai(ui, vi) = a(u,wi) = (f, wi)L2(Ω) = (fi, vi)L2(Ωi).

Moreover, T1u1 = T2u2 follows immediately from Lemma 4.5. For an arbitrary µ ∈ Λ
let vi = Riµ. Then, by Lemma 4.6, v = {v1 on Ω1; v2 on Ω2} is an element in V and

a1(u1, R1µ) + a2(u2, R2µ) = a(u, v) = (f, v)L2(Ω) = (f1, R1µ)L2(Ω1) + (f2, R2µ)L2(Ω2).

This proves that (u1, u2) solves (5.1). Conversely, let (u1, u2) ∈ V1 × V2 be a solution
to (5.1) and define u = {u1 on Ω1; u2 on Ω2}. By Lemma 4.6, we have that u ∈ V .
Next, consider v ∈ V and let vi = v|Ωi

∈ Vi. From Lemma 4.5 we have that µ = Tivi
is well defined and µ ∈ Λ. The observation that vi − Riµ ∈ V 0

i , for i = 1, 2, then
implies the equality

a(u, v) =

2∑
i=1

ai(ui, vi −Riµ) + ai(ui, Riµ) =

2∑
i=1

(fi, vi −Riµ)L2(Ωi) + ai(ui, Riµ)

=

2∑
i=1

(fi, vi)L2(Ωi) + ai(ui, Riµ)− (fi, Riµ)L2(Ωi) = (f, v)L2(Ω).

As v can be chosen arbitrarily, u solves (2.1).

Remark 5.3. As the nonlinear elliptic equation (2.1) has a unique weak solution,
Theorem 5.2 implies that the same holds true for the nonlinear transmission prob-
lem (5.1).

Remark 5.4. The equivalence can easily be generalized to more than two sub-
domains without cross points as in Figure 1c. However, for domain decompositions
with cross points such as in Figure 1d, the situation is more delicate. A proof of
the equivalence for quasilinear equations in H1(Ω) can be found in [20]. This result
can most likely be generalized to our W 1,p(Ω)-setting, but we will study this aspects
elsewhere.
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In order to approximate the weak solution (un1 , u
n
2 ) ∈ V1 × V2 of the nonlinear

transmission problem in a parallell fashion, we consider the Robin–Robin method.
Multiplying by test functions and formally applying Green’s formula to the equa-
tions (1.4) yield that the weak form of the method is given by finding (un1 , u

n
2 ) ∈

V1 × V2, for n = 1, 2, . . . , such that

(5.2)



a1(un+1
1 , v1) = (f1, v1)L2(Ω1), for all v1 ∈ V 0

1

a1(un+1
1 , R1µ)− (f1, R1µ)L2(Ω1) + a2(un2 , R2µ)

− (f2, R2µ)L2(Ω2) = s(T2u
n
2 − T1u

n+1
1 , µ)L2(Γ), for all µ ∈ Λ,

a2(un+1
2 , v2) = (f2, v2)L2(Ω2), for all v2 ∈ V 0

2

a2(un+1
2 , R2µ)− (f2, R2µ)L2(Ω2) + a1(un+1

1 , R1µ)

− (f1, R1µ)L2(Ω1) = s(T1u
n+1
1 − T2u

n+1
2 , µ)L2(Γ), for all µ ∈ Λ,

where u0
2 ∈ V2 is an initial guess and s > 0 is the given method parameter.

6. Interface formulations. The ambition is now to reformulate the nonlin-
ear transmission problem and the Robin–Robin method, which are all given on the
domains Ωi, into problems and methods only stated on the interface Γ. As a prepara-
tion, we observe that nonlinear elliptic equations on Ωi with inhomogeneous Dirichlet
conditions have unique weak solutions.

Lemma 6.1. If the Assumptions 2.1 and 3.1 hold, then for each η ∈ Λi there
exists a unique ui ∈W 1,p(Ωi) such that

(6.1) ai(ui, vi) = (fi, vi)L2(Ωi), for all vi ∈ V 0
i ,

and T∂Ωiui = Eiη in W 1−1/p,p(∂Ωi).

The proof can, e.g., be found in [19, Theorem 2.36]. With the notation of Lemma 6.1,
consider the operator

Fi : η 7→ ui,

i.e., the map from a given boundary value on Γ to the corresponding weak solution
of the nonlinear elliptic problem (6.1) on Ωi. From the statement of Lemma 6.1 we
see that

Fi : Λi → Vi and TiFiη = η for η ∈ Λi.

In other words, the operator Fi is a nonlinear right inverse to Ti. This property will
be frequently used as it, together with the boundedness and linearity of Ti, gives rise
to bounds of the forms

‖η‖Λi
≤ Ci‖Fiη‖Vi

and ‖η − µ‖Λi
≤ Ci‖Fiη − Fiµ‖Vi

.

We can now define the nonlinear Steklov–Poincaré operators as

〈Siη, µ〉 = ai(Fiη,Riµ)− (fi, Riµ)L2(Ωi), for all η, µ ∈ Λi, and

〈Sη, µ〉 =

2∑
i=1

〈Siη, µ〉 =

2∑
i=1

ai(Fiη,Riµ)− (fi, Riµ)L2(Ωi), for all η, µ ∈ Λ.

Thus, we may restate the nonlinear transmission problem (5.1) as the Steklov–Poincaré
equation, i.e., finding η ∈ Λ such that

(6.2) 〈Sη, µ〉 = 0, for all µ ∈ Λ.
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That the reformulation is possible follows directly from the definitions of the operators
Fi and S, but we state this as a lemma for future reference.

Lemma 6.2. Let the Assumptions 2.1 and 3.1 hold. If (u1, u2) solves (5.1), then
η = T1u1 = T2u2 solves (6.2). Conversely, if η solves (6.2), then (u1, u2) = (F1η, F2η)
solves (5.1).

We next turn to the Robin–Robin method, which is equivalent to the Peaceman–
Rachford splitting on the interface Γ. The weak form of the splitting is given by
finding (ηn1 , η

n
2 ) ∈ Λ1 × Λ2, for n = 1, 2, . . . , such that

(6.3)

{
〈(sJ + S1)ηn+1

1 , µ〉 = 〈(sJ − S2)ηn2 , µ〉,
〈(sJ + S2)ηn+1

2 , µ〉 = 〈(sJ − S1)ηn+1
1 , µ〉,

for all µ ∈ Λ, where η0
2 ∈ Λ2 is an initial guess.

The observation that the Robin–Robin method and the Peaceman–Rachford split-
ting are equivalent for linear elliptic equations was made in [1]. The equivalence was
also utilized in [5, Section 4.4.1] for the linear setting of the Stokes–Darcy coupling.

Lemma 6.3. Let the Assumptions 2.1 and 3.1 be valid. If (un1 , u
n
2 )n≥1 is a weak

Robin–Robin approximation (5.2), then (ηn1 , η
n
2 )n≥1 = (T1u

n
1 , T2u

n
2 )n≥1 is a weak

Peaceman–Rachford approximation (6.3), with η0
2 = T2u

0
2. Conversely, if (ηn1 , η

n
2 )n≥1

is given by (6.3), then (un1 , u
n
2 )n≥1 = (F1η

n
1 , F2η

n
2 )n≥1 fulfils (5.2), with u0

2 = F2η
0
2.

Proof. First assume that (un1 , u
n
2 )n≥1 ⊂ V1 × V2 is a weak Robin–Robin approxi-

mation and define ηni = Tiu
n
i ∈ Λi. This definition, the existence of a unique solution

of (6.1) and the first and third assertions of (5.2) yield the identification uni = Fiη
n
i .

Inserting this into the second and fourth assertion of (5.2) gives us

s(T1F1η
n+1
1 , µ)L2(Γ) + a1(F1η

n+1
1 , R1µ)− (f,R1µ)L2(Ω1)

= s(T2F2η
n
2 , µ)L2(Γ) − a2(F2η

n
2 , R2µ) + (f,R2µ)L2(Ω2), and

s(T2F2η
n+1
2 , µ)L2(Γ) + a2(F2η

n+1
2 , R2µ)− (f,R2µ)L2(Ω2)

= s(T1F1η
n+1
1 , µ)L2(Γ) − a1(F1η

n+1
1 , R1µ) + (f,R1µ)L2(Ω1),

for all µ ∈ Λ, which is precisely the weak form of the Peaceman–Rachford split-
ting (6.3), with η0

2 = T2u
0
2. Conversely, suppose that (ηn1 , η

n
2 )n≥1 ⊂ Λ1 × Λ2 is a

weak Peaceman–Rachford approximation and define uni = Fiη
n
i ∈ Vi. Inserting this

into (6.3) directly gives that (un1 , u
n
2 )n≥1, with u0

2 = F2η
0
2 , is a weak Robin–Robin

approximation (5.2).

Remark 6.4. For now we do not know if the weak Robin–Robin and Peaceman–
Rachford approximations actually exist, but we will return to this issue shortly.

7. Properties of the nonlinear Steklov–Poincaré operators. We proceed
by deriving the central properties of the Steklov–Poincaré operators Si, S when inter-
preted as maps from Λi,Λ into the corresponding dual spaces.

Lemma 7.1. If the Assumptions 2.1 and 3.1 hold, then Si : Λi → Λ∗i and S : Λ→
Λ∗ are well defined.

Proof. The linearity of the functionals Siη and Sη follow by definition. As Fiη ∈
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Vi we have, by Lemma 5.1, that

|〈Siη, µ〉| ≤ |ai(Fiη,Riµ)|+ |(fi, Riµ)L2(Ωi)|
≤ ci(‖∇Fiη‖p−1

Lp(Ωi)d
‖∇Riµ‖Lp(Ωi)d

+ ‖Fiη‖r−1
Lr(Ωi)

‖Riµ‖Lr(Ωi)
)

+ ‖fi‖L2(Ωi)‖Riµ‖L2(Ωi)

≤ Ci(‖∇Fiη‖Vi , ‖fi‖L2(Ωi))‖Riµ‖Vi ≤ Ci‖µ‖Λi ,

for all µ ∈ Λi. Thus, Siη is a bounded functional on Λi. The boundedness of Sη
follows directly by summing up the bounds for Si .

Lemma 7.2. If the Assumptions 2.1 and 3.1 hold, then the operators Si : Λi → Λ∗i
and S : Λ→ Λ∗ are strictly monotone with

〈Siη − Siµ, η − µ〉 ≥ ci
(
‖∇(Fiη − Fiµ)‖p

Lp(Ωi)d
+ ‖Fiη − Fiµ‖rLr(Ωi)

)
,

for all η, µ ∈ Λi, and

〈Sη − Sµ, η − µ〉 ≥ c
2∑
i=1

(
‖∇(Fiη − Fiµ)‖p

Lp(Ωi)d
+ ‖Fiη − Fiµ‖rLr(Ωi)

)
,

for all η, µ ∈ Λ, respectively.

Proof. Since, wi = Ri(η − µ) − (Fiη − Fiµ) ∈ V 0
i , for all η, µ ∈ Λi, we have

according to the definition of Fi that

(7.1) ai(Fiη, wi)− ai(Fiµ,wi) = 0.

By this equality and Lemma 5.1, it follows that

〈Siη − Siµ, η − µ〉 = ai
(
Fiη,Ri(η − µ)

)
− ai

(
Fiµ,Ri(η − µ)

)
= ai(Fiη, wi) + ai(Fiη, Fiη − Fiµ)− ai(Fiµ,wi)− ai(Fiµ, Fiη − Fiµ)

≥ ci
(
‖∇(Fiη − Fiµ)‖p

Lp(Ωi)d
+ ‖Fiη − Fiµ‖rLr(Ωi)

)
,

for all η, µ ∈ Λi, which proves the monotonicity bound for Si. The bound for S follows
directly by summing up the bounds for Si.

Lemma 7.3. If the Assumptions 2.1 and 3.1 hold, then the operators Si : Λi → Λ∗i
and S : Λ→ Λ∗ are coercive, i.e,

lim
‖η‖Λi

→∞

〈Siη, η〉
‖η‖Λi

=∞ and lim
‖η‖Λ→∞

〈Sη, η〉
‖η‖Λ

=∞.

Proof. As ‖Fiη‖Vi
= ‖∇Fiη‖Lp(Ωi)d + ‖Fiη‖Lr(Ωi) ≥ ci‖η‖Λi

, we have that

P (‖∇Fiη‖Lp(Ωi)d , ‖Fiη‖Lr(Ωi))→∞, as ‖η‖Λi
→∞,

where P (x, y) = (xp + yr)/(x+ y). In particular, we assume from now on that

P (‖∇Fiη‖Lp(Ωi)d , ‖Fiη‖Lr(Ωi)) ≥ ‖fi‖L2(Ωi).



14 E. ENGSTRÖM, E. HANSEN

By observing that Riη − Fiη ∈ V 0
i , Lemma 5.1 yields the lower bound

〈Siη, η〉 = ai(Fiη, Fiη) + ai(Fiη,Riη − Fiη)− (fi, Riη)L2(Ωi)

= ai(Fiη, Fiη) + (fi, Riη − Fiη)L2(Ωi) − (fi, Riη)L2(Ωi)

≥ ci(‖∇Fiη‖pLp(Ωi)d
+ ‖Fiη‖rLr(Ωi)

)− (fi, Fiη)L2(Ωi)

≥ ciP (‖∇Fiη‖Lp(Ωi)d , ‖Fiη‖Lr(Ωi))‖Fiη‖Vi
− ‖fi‖L2(Ωi)‖Fiη‖Vi

≥ ci
(
P (‖∇Fiη‖Lp(Ωi)d , ‖Fiη‖Lr(Ωi))− ‖fi‖L2(Ωi)

)
‖η‖Λi

,

which implies that Si is coercive. For S we obtain that

〈Sη, η〉
‖η‖Λ

≥
∑2
i=1

(
ci P (‖∇Fiη‖Lp(Ωi)d , ‖Fiη‖Lr(Ωi))− ‖fi‖L2

)
‖η‖Λi

‖η‖Λ1
+ ‖η‖Λ2

,

which tends to infinity as ‖η‖Λ tends to infinity. Thus, S is also coercive.

In order to prove that the operators Si, S are demicontinuous, we first consider
the continuity of the operators Fi.

Lemma 7.4. If the Assumptions 2.1 and 3.1 hold, then the nonlinear operators
Fi : Λi → Vi are continuous.

Proof. Let η, µ be elements in Λi. Using the equality (7.1) together with Lemma 5.1
gives us the bound

(7.2)

ci(‖∇(Fiη − Fiµ)‖p
Lp(Ωi)d

+ ‖Fiη − Fiµ‖rLr(Ωi)
)

≤ ai(Fiη, Fiη − Fiµ)− ai(Fiµ, Fiη − Fiµ)

= ai
(
Fiη,Ri(η − µ)

)
− ai(Fiη, wi)− ai

(
Fiµ,Ri(η − µ)

)
+ ai(Fiµ,wi)

≤ Ci
(
‖∇Fiη‖p−1

Lp(Ωi)d
‖∇Ri(η − µ)‖

Lp(Ωi)d
+ ‖Fiη‖r−1

Lr(Ωi)
‖Ri(η − µ)‖Lr(Ωi)

+ ‖∇Fiµ‖p−1
Lp(Ωi)d

‖∇Ri(η − µ)‖
Lp(Ωi)d

+ ‖Fiµ‖r−1
Lr(Ωi)

‖Ri(η − µ)‖Lr(Ωi)

)
≤ Ci

(
‖∇Fiη‖p−1

Lp(Ωi)d
+ ‖Fiη‖r−1

Lr(Ωi)

+ ‖∇Fiµ‖p−1
Lp(Ωi)d

+ ‖Fiµ‖r−1
Lr(Ωi)

)
‖η − µ‖Λi

.

Letting µ = 0 in (7.2) and employing the inequality |x|p − 2p−1|y|p ≤ 2p−1|x − y|p,
twice, yield that

ci(‖∇Fiη‖pLp(Ωi)d
+ ‖Fiη‖rLr(Ωi)

− 2p−1‖∇Fi0‖pLp(Ωi)d
− 2r−1‖Fi0‖rLr(Ωi)

)

≤ ci(2p−1‖∇(Fiη − Fi0)‖p
Lp(Ωi)d

+ 2r−1‖Fiη − Fi0‖rLr(Ωi)
)

≤ Ci
(
‖∇Fiη‖p−1

Lp(Ωi)d
+ ‖Fiη‖r−1

Lr(Ωi)
+ ‖∇Fi0‖p−1

Lp(Ωi)d
+ ‖Fi0‖r−1

Lr(Ωi)

)
‖η‖Λi

.

Thus, we have a bound of the form

(7.3)
‖∇Fiη‖pLp(Ωi)d

+ ‖Fiη‖rLr(Ωi)
− c1

‖∇Fiη‖p−1
Lp(Ωi)d

+ ‖Fiη‖r−1
Lr(Ωi)

+ c2
≤ Ci‖η‖Λi

,

for every η ∈ Λi, where c` = c`(‖∇Fi0‖Lp(Ωi)d , ‖Fi0‖Lr(Ωi)) ≥ 0.

Assume that ηk → η in Λi. As ηk is bounded in Λi, the bound (7.3) implies
that ∇Fiηk and Fiη

k are bounded in Lp(Ωi)
d and Lr(Ωi), respectively. By setting

µ = ηk in (7.2), we finally obtain that ∇Fiηk → ∇Fiη in in Lp(Ωi)
d and Fiη

k → Fiη
in Lr(Ωi), i.e., Fiη

k → Fiη in Vi.
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Lemma 7.5. If the Assumptions 2.1 and 3.1 hold, then the operators Si : Λi → Λ∗i
and S : Λ→ Λ∗ are demicontinuous, i.e., if ηki → ηi in Λi and ηk → η in Λ then

〈Siηki − Siηi, µi〉 → 0 and 〈Sηk − Sη, µ〉 → 0,

for all µi ∈ Λi and µ ∈ Λ.

Proof. Assume that ηki → ηi in Λi. Lemma 7.4 then implies that ∇Fiηk → ∇Fiη
in Lp(Ωi)

d and Fiη
k → Fiη in Lr(Ωi). By the assumed continuity and boundedness of

the functions α : z 7→
(
α1(z), . . . , αd(z)

)
and g, we also have that the corresponding

Nemyckii operators α` : Lp(Ωi)
d → Lp/(p−1)(Ωi) and g : Lr(Ωi) → Lr/(r−1)(Ωi) are

continuous [25, Proposition 26.6]. The demicontinuity of Si then holds, as

|〈Siηki − Siηi, µi〉| ≤
( d∑
`=1

‖α`(∇Fiηki )− α`(∇Fiηi)‖Lp/(p−1)(Ωi)

+ ‖g(Fiη
k
i )− g(Fiηi)‖Lr/(r−1)(Ωi)

)
‖Riµi‖Vi ,

for every µi ∈ Λi. The demicontinuity of Si directly implies the same property for S,
as a convergent sequence {ηk} in Λ is also convergent in Λ1 and Λ2.

Theorem 7.6. If the Assumptions 2.1 and 3.1 hold, then the nonlinear Steklov–
Poincaré operators Si : Λi → Λ∗i and S : Λ→ Λ∗ are bijective.

Proof. The spaces Λi and Λ are real, reflexive Banach spaces and, by Lemmas 7.2,
7.3 and 7.5, the operators Si : Λi → Λ∗i and S : Λ → Λ∗ are all strictly monotone,
coercive and demicontinuous. With these properties, the Browder–Minty theorem;
see, e.g., [25, Theorem 26.A(a,c,f)], implies that the operators are bijective.

The next corollary follows by the same argumentation as for the bijectivity of Si.

Corollary 7.7. If the Assumptions 2.1 and 3.1 hold, then the operators sJ+Si :
Λi → Λ∗i are bijective, for every s > 0.

8. Existence and convergence of the Robin–Robin method. The weak
form of the Peaceman–Rachford splitting (6.3) seems to be too general for a conver-
gence analysis. To remedy this, we will restrict the domains of the operators Si, S
such that the Steklov–Poincaré equation (6.2) and the Peaceman–Rachford splitting
can be interpreted on L2(Γ) instead of on the dual spaces Λ∗i ,Λ

∗. This comes at the
cost of requiring more regularity of the weak solution and of the initial guess η0

2 .
More precisely, we define the operators Si : D(Si) ⊆ L2(Γ)→ L2(Γ) as

D(Si) = {µ ∈ Λi : Siµ ∈ L2(Γ)∗} and Siµ = J−1Siµ for µ ∈ D(Si).

Analogously, we introduce S : D(S) ⊆ L2(Γ)→ L2(Γ) given by

D(S) = {µ ∈ Λ : Sµ ∈ L2(Γ)∗} and Sµ = J−1Sµ for µ ∈ D(S).

As the zero functional obviously is an element in L2(Γ)∗, the unique solution η ∈ Λ
of the Steklov–Poincaré equation is in D(S) and

Sη = 0.

Remark 8.1. By the above construction, one obtains that D(S1)∩D(S2) ⊆ D(S)
and

Sµ = S1µ+ S2µ, for all µ ∈ D(S1) ∩D(S2).

However, the definition of the domains do not ensure that D(S) is equal to D(S1) ∩
D(S2), as (S1 + S2)µ ∈ L2(Γ)∗ does not necessarily imply that Siµ ∈ L2(Γ)∗.
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If the weak solution of the nonlinear elliptic equation (2.1) satisfies the additional
regularity property stated in Assumption 2.6, then the corresponding solution of Sη =
0 is in fact an element in D(S1)∩D(S2). This propagation of regularity will be crucial
when proving convergence of the Peaceman–Rachford splitting.

Lemma 8.2. If the Assumptions 2.1, 2.6 and 3.1 hold and Sη = 0, then η ∈
D(S1) ∩D(S2).

Proof. As u = {F1η on Ω1;F2η on Ω2} is the weak solution of (2.1), we have that∫
Ω

α(∇u) · ∇v dx = −
∫

Ω

(
g(u)− f

)
v dx, for all v ∈ C∞0 (Ω).

The restrictions on r in Assumption 2.1 yield that u ∈ W 1,p(Ω) ↪→ L2(r−1)(Ω). This
together with the observation |g(u)|2 ≤ C|u|2(r−1) implies that g(u) − f ∈ L2(Ω),
i.e., the distributional divergence of α(∇u) is in L2(Ω)d. By Assumption 2.6 and
restricting to Ωi, we arrive at

α(∇Fiη) ∈ H(div,Ωi) ∩ C(Ωi)
d, α(∇Fiη) · νi ∈ L∞(∂Ωi) and

∇ · α(∇Fiη) = g(Fiη)− fi ∈ L2(Ωi).

The H(div,Ωi)-version of Green’s formula [8, Chapter 1, Corollary 2.1] then gives us∫
Ωi

α(∇Fiη) · ∇v dx = −
∫

Ωi

∇ · α(∇Fiη)v dx+

∫
∂Ωi

α(∇Fiη) · νi T∂Ωi
v dS,

for all v ∈ H1(Ωi). Hence,

〈Siη, µ〉 =

∫
Ωi

α(∇Fiη) · ∇Riµdx+

∫
Ωi

(
g(Fiη)− fi

)
Riµdx

=

∫
∂Ωi

α(∇Fiη) · νi T∂Ωi
RiµdS =

(
α(∇Fiη) · νi, µ

)
L2(Γ)

, for all µ ∈ Λi,

which implies that η ∈ D(Si), for i = 1, 2.

Remark 8.3. From the proof it is clear that the regularity assumption α(∇u) ∈
C(Ω)d is stricter than necessary, and could be replaced by assuming that the normal
component of α(∇u) on Γ can be interpreted as an element in L2(Γ)∗. However,
characterizing the spatial regularity of u required to satisfy this weaker assumption
demands a more elaborate trace theory than the one considered in section 3.

Lemma 8.4. If the Assumptions 2.1 and 3.1 hold, then the operators Si are mono-
tone, i.e.,

(Siη − Siµ, η − µ)L2(Γ) ≥ 0, for all η, µ ∈ D(Si),
and the operators sI + Si : D(Si)→ L2(Γ) are bijective for any s > 0.

Proof. The monotonicity follows by Lemma 7.2, as

(Siη − Siµ, η − µ)L2(Γ) = (J−1Siη − J−1Siµ, η − µ)L2(Γ)

= 〈Siη − Siµ, η − µ〉 ≥ 0, for all η, µ ∈ D(Si) ⊆ Λi.

For a fixed s > 0 and an arbitrary µ ∈ L2(Γ) we have, due to Corollary 7.7, that there
exists a unique η ∈ Λi such that (sJ + Si)η = Jµ in Λ∗i , i.e.,

Siη = J(µ− sη) ∈ L2(Γ)∗.

Hence, η ∈ D(Si) and (sI+Si)η = µ in L2(Γ). The operators sI+Si : D(Si)→ L2(Γ)
are therefore bijective.
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The Peaceman–Rachford splitting on L2(Γ) is now given by finding (ηn1 , η
n
2 ) ∈

D(S1)×D(S2), for n = 1, 2, . . . , such that

(8.1)

{
(sI + S1)ηn+1

1 = (sI − S2)ηn2 ,

(sI + S2)ηn+1
2 = (sI − S1)ηn+1

1 ,

where η0
2 ∈ D(S2) is an initial guess. Lemma 8.4 then directly yields the existence of

the approximation.

Corollary 8.5. If the Assumptions 2.1 and 3.1 hold and η0
2 ∈ D(S2), then there

exists a unique Peaceman–Rachford approximation (ηn1 , η
n
2 )n≥1 ⊂ D(S1)×D(S2) given

by (8.1) in L2(Γ).

Corollary 8.6. Let the Assumptions 2.1 and 3.1 hold, η0
2 ∈ D(S2) and set

u0
2 = F2η

0
2. The Peaceman–Rachford approximation (ηn1 , η

n
2 )n≥1 ⊂ D(S1) × D(S2)

also satisfies the weak formulation (6.3), and (un1 , u
n
2 )n≥1 = (F1η

n
1 , F2η

n
2 )n≥1 is a

weak Robin–Robin approximation (5.2).

Proof. Assume that (ηn1 , η
n
2 )n≥1 ⊂ D(S1) × D(S2) is a Peaceman–Rachford ap-

proximation in L2(Γ). Then,(
(sI + S1)ηn+1

1 , µ
)
L2(Γ)

=
(
(sI − S2)ηn2 , µ

)
L2(Γ)

, for all µ ∈ L2(Γ),(
(sI + S1)ηn+1

1 , µ
)
L2(Γ)

= 〈(sJ + S1)ηn+1
1 , µ〉, for all µ ∈ Λ1, and(

(sI − S2)ηn2 , µ
)
L2(Γ)

= 〈(sJ − S2)ηn2 , µ〉, for all µ ∈ Λ2.

This implies that

〈(sJ + S1)ηn+1
1 , µ〉 = 〈(sJ − S2)ηn2 , µ〉, for all µ ∈ Λ = Λ1 ∩ Λ2,

i.e., the first assertion of (6.3) holds. The same argumentation yields that the second
assertion of (6.3) is valid. As (ηn1 , η

n
2 )n≥1 satisfies (6.3), Lemma 6.3 directly implies

that (un1 , u
n
2 )n≥1 = (F1η

n
1 , F2η

n
2 )n≥1 is a weak Robin–Robin approximation (5.2).

Remark 8.7. At a first glance, finding an initial guess satisfying η0
2 ∈ D(S2) might

seem limiting, as the domain is not explicitly given. However, such an initial guess
can, e.g., be found by solving 〈S2η

0
2 , µ〉 = 0, for all µ ∈ Λ2.

With this L2(Γ)-framework the key part of the convergence proof follows by the
abstract result [14, Proposition 1]. For sake of completeness we state a simplified
version of the short proof in the current notation.

Lemma 8.8. Consider the solution of Sη = 0 and the Peaceman–Rachford ap-
proximation (ηn1 , η

n
2 )n≥1. If η0

2 ∈ D(S2) and the Assumptions 2.1, 2.6 and 3.1 hold,
then

(8.2) (Siηni − Siη, ηni − η)L2(Γ) → 0, as n→∞,

for i = 1, 2.

Proof. By the hypotheses and Lemma 8.2, we obtain that η ∈ D(S1)∩D(S2) and
S1η = −S2η. Furthermore,

ηn+1
1 = (sI+S1)−1(sI−S2)ηn2 ∈ D(S1) and ηn+1

2 = (sI+S2)−1(sI−S1)ηn+1
1 ∈ D(S2).

Next, we introduce the notation

µn = (sI + S2)ηn2 , µ = (sI + S2)η, λn = (sI − S2)ηn2 and λ = (sI − S2)η,
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which yields the representations

η =
µ+ λ

2s
, S2η =

µ− λ
2

, S1η =
λ− µ

2
,

ηn2 =
µn + λn

2s
, S2η

n
2 =

µn − λn

2
,

ηn+1
1 =

µn+1 + λn

2s
, S1η

n+1
1 =

λn − µn+1

2
.

The monotonicity of Si then gives the bounds

0 ≤ (S2η
n
2 − S2η, η

n
2 − η)L2(Γ)

=
1

4s

(
(µn − µ)− (λn − λ), (µn − µ) + (λn − λ)

)
L2(Γ)

=
1

4s

(
‖µn − µ‖2L2(Γ) − ‖λ

n − λ‖2L2(Γ)

)
,

and

0 ≤ (S1η
n+1
1 − S1η, η

n+1
1 − η)L2(Γ)

=
1

4s

(
(λn − λ)− (µn+1 − µ), (λn − λ) + (µn+1 − µ)

)
L2(Γ)

=
1

4s

(
‖λn − λ‖2L2(Γ) − ‖µ

n+1 − µ‖2L2(Γ)

)
.

Putting this together yields that

‖µn+1 − µ‖2L2(Γ) ≤ ‖λ
n − λ‖2L2(Γ) ≤ ‖µ

n − µ‖2L2(Γ),

and we obtain the telescopic sum

0 ≤
N∑
n=0

(
‖µn − µ‖2L2(Γ) − ‖µ

n+1 − µ‖2L2(Γ)

)
≤ ‖µ0 − µ‖2L2(Γ) − ‖µ

N+1 − µ‖2L2(Γ),

i.e., ‖µn − µ‖2L2(Γ) − ‖µ
n+1 − µ‖2L2(Γ) → 0 as n → ∞. The latter together with the

bounds above imply the sought after limits (8.2).

Theorem 8.9. Consider the Peaceman–Rachford approximation (ηn1 , η
n
2 )n≥1, given

by (8.1), of the Steklov–Poincaré equation Sη = 0 in L2(Γ), together with the cor-
responding Robin–Robin approximation (un1 , u

n
2 )n≥1 = (F1η

n
1 , F2η

n
2 )n≥1 of the weak

solution u = {F1η on Ω1;F2η on Ω2} to the nonlinear elliptic equation (2.1).
If η0

2 ∈ D(S2) and the Assumptions 2.1, 2.6 and 3.1 hold, then

(8.3) ‖ηn1 −η‖Λ1
+‖ηn2 −η‖Λ2

→ 0, and ‖un1 −u‖W 1,p(Ω1) +‖un2 −u‖W 1,p(Ω2) → 0,

as n tends to infinity.

Proof. By the monotonicity bound in Lemma 7.2, the property that ηni , η ∈ D(Si)
and Lemma 8.8, we have the limits

ci
(
‖∇(Fiη

n
i − Fiη)‖p

Lp(Ωi)d
+ ‖Fiηni − Fiη‖rLr(Ωi)

)
≤ 〈Siηni − Siη, ηni − η〉

= (Siηni − Siη, ηni − η)L2(Γ) → 0, as n→∞,
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for i = 1, 2. Hence, each of the terms ‖∇(Fiη
n
i −Fiη)‖Lp(Ωi)d and ‖Fiηni −Fiη‖Lr(Ωi)

tend to zero, which yields that

‖ηni − η‖Λi
≤ C‖Fiηni − Fiη‖Vi

→ 0, as n→∞,

for i = 1, 2. The desired convergence (8.3) is then proven, as ‖ · ‖Vi and ‖ · ‖W 1,p(Ωi)

are equivalent norms.
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